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Abstract

This paper presents an approximation method fdm&nsional plate that localizes an
integration area and reduces a computational Idhe. method is based upon the locality of
scattering phenomena. The proposed method is the gpproximation method and has the effect
of computational load reduction at the high frequies.
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1. Introduction

Procedure of calculating a scattering field is posed of two stages. First is the analysis of
currents induced on the scatterer surface. The adedfi moments (MoM) is one of the method
commonly used. Second is radiation surface integta¢ induced currents are multiplied with the
Green’s function and are surface-integrated oveslavthe scatterer surface. At higher frequencies,
computation loads in both the stages become heaasgpecially in the former, while locality of
scattering phenomena appears.

This phenomenon is visualized in Figure 1 [1]. Tdwmtribution from each part of the
induced currents is localized on the plate; nearrdflection point and edge diffraction points &s i
defined in the GTD. This property is called logaliThe locality considered, the scattering field ca
be approximated by integrating the currents onethesal areas and the computation loads can be
decreased.

Figure 2 shows the steps in the approximationdagen the locality and the location of
this paper. First step is that integration areldslized after analysis for full model. Next stigp
that current distribution on reduced scattererilgponly the areas around the point of reflection
and diffraction is analyzed by MoM. The approxiroatmethods in both the steps are examined for
2-dimensional structure [2], [3]. This paper prdesemn approximation method in the former step.

2.Concept of Locality

In order to extract the locality, it is necesstryinderstand the method of stationary phase.
Figure 3 shows a concept of stationary phase piyppEne integrand contains a oscillating function
which comes from the phase change associated hétictiange in the path length from the source
(S) to the observer (O) via the integration poijtop the surface. The vibration becomes more
rapid at higher frequencies. Figure 3 depicts tekalkior of the real (or imaginary) part of the
integrand in the radiation integral. A result ofeigrating that function in the area where the phase
changes is more rapid is approximately equal to zere to the cancellation effect. The areas in
which the cancellation effect is weak exist neag #tationary phase point (SPP) and edge
diffraction points, where the path length becomegx@reme value. The result of integrating in that
area is not zero. Therefore, we use Fresnel zooeneept based upon the path length, as a criterion
for determining local areas.

3. Determination of Local I ntegration Areas and Weighting function

3.1 Stationary Phase Point (SPP)

The Fresnel zone numberis defined as = L / (24), whereL is the length of path from
source via point on the scatterer to observer aigdthe wavelength. The local areas are specified
by the difference of the Fresnel zone number; guks 4,|n —np\ =An<np , where np andn, are




the Fresnel zone number at the SPP and the pointevést on the scattering surface, respectively,
and np is the parameter to determine the size of loadsarWe putpy =3 here. In other words, the
area where difference in the path is within 3/2 @lemgth is defined as local area.

In extracting the locality, a weighting is alsopamntant. After localized, fictitious edges
which do not exist in the original problem appead avould produce undesired edge contribution.
A weighting is necessity to suppress these. EYEtfan is used as a weighting function in this
paper. EYE function is defined by (1).

EYE(An) = ;{Co{ﬁ: ﬂj ' J} (A< o) (1)
0 (Aan>ro)

To summarize the above discussion, a scattereld fian be approximated by integrating
the currents weighted by EYE function in the omlgdlized area determined by the Fresnel zone.

3.2 Edge Diffraction Points

A model in Figure 5 is examined in this paper. Hb®ve approximation method can be
applied for the SPP but the diffraction points. #epose a way to determine local areas around the
diffraction points [4], [5]. The procedure is afidavs and shown in Figure 6.

First, imaginary tangential infinite planes ar¢ ae edge and corner diffraction points.
These planes are satisfied with a reflection laecdddly, local areas are determined on these
imaginary planes under the same condition for ﬂh@;&l —np\ =An<no, and then, EYE function

is applied to these local areas. Finally, the lao&las and values of a weight on the imaginary
planes are projected on the real scatterer surfduese projected areas are the real local integral
areas.

4. Numerical Demonstration

Figure 7 shows a total field calculated by apmythe proposed approximation method.
The currents distribution was given by the Phys@ptics (PO). The result by the approximation,
localization method is in good agreement with tbsuits by the usual, non-localization methods.
The right vertical axis indicates a ratio of loeaéa to the whole and corresponds to a dashed line.
However the ratio changes depending on an observatigle, surface-integrating at most 43%
areas of the whole can reproduce a scattering. figdé picture below the graph shows the local
areas and values of a weight. A shape and the nuofblecal areas change depending on an
observation angle.

Figure 8 shows the frequency dependence of tlie shtocal area to the whole area. The
frequency is normalized by the frequency assumethéocase of Figure 5. The ratios become small
in proportion to the first power of the frequende fact suggests that at most 4.3% areas of the
whole are large enough to reproduce a scatterigld fi 10 times frequency. Local areas in 10
times frequency are visualized below the grapht & say that computational load of radiation
integrals becomes smaller at higher frequencidsilsymethod.

5. Conclusion

In calculating a scattering field from a rectangydate,the approximation method based
upon the locality of scattering phenomena was pegoThe Fresnel zone was used as a criterion
for determining local areas and EYE function wagliapg to these areas. We showed that
suggestion technique was the good approximatiomadet-urthermore, this method has the effect
of computational load reduction at the high freqyerMoM analysis for currents on reduced
scatterer is left for the future works.
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Figure 1: Visualization of
scattering phenomena from plate
illuminated by a dipole

Figure 2: Steps in approximation based upon
the locality and the location of this paper
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Figure 3: Concept of stationary phase property Figure 4: Determination of local area
for the stationary phase point
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Figure 5: Analysis model

Figure 6: Determining local area for the
(a source and a rectangular) diffraction points
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Figure 7: Computation Result (top) and visualizawd local areas and weights (bottom)
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Figure 8: Frequency characteristic graph of reduatatio (top) and visualization (bottom)




