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Abstract 
 We have derived a novel uniform asymptotic solution for the transmitted and scattered 
waves when the cylindrical wave is incident on a plane dielectric interface from the denser 
dielectric medium. We have confirmed the validity of the uniform asymptotic solution by 
comparing with the reference solution obtained numerically. 
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1. Introduction 

When the cylindrical wave or the spherical wave is incident on the plane dielectric interface 
from a denser side of medium, the observation point placed in the rarer medium may receive only 
the transmitted geometrical ray in the short distance from the source and both the transmitted 
geometrically ray and the evanescent wave in the long distance [1]-[6]. Thus the solution in the 
short distance is different from the solution in the long distance. Therefore, it is necessary to find 
out the solution which can connect smoothly the two different solutions. 

In the present study, we shall derive a novel uniform asymptotic solution for the transmitted 
and scattered waves observed in the rarer medium when the cylindrical wave radiated from the line 
source is incident on a plane dielectric interface from the side of the denser dielectric medium 
[6]-[9]. We will derive the asymptotic solution for the transition wave which plays an important role 
to connect the one solution in the near region to the other solution in the far region smoothly 
through the transition region [2], [6]-[9]. Also shown is the physical interpretation of the asymptotic 
solution.  

 
2. Uniform Asymptotic Solution for Transmitted Waves 
2.1 Integral Representation for Transmitted Waves 

In Fig.1, we have shown the Cartesian coordinate system , , , plane  dielectric 
interface 0 consisting of denser upper medium ,  and rarer lower medium , , 

, electric line source 0,  directing  direction, totally reflected ray, transmitted ray, 
and evanescent wave. Area of the  lower      medium    is divided into three regions, i.e., the near region, 
the transition region, and the far region along the x-direction and into two regions (shallow region 
and deep region) along the ( )-direction.  

When the electromagnetic wave is radiated from the electric line source ,
0,  , the electric field ,  observed in the lower medium ,  may be given by [2], 

[6]-[10]  
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where R and  in (2) are defined geometrically in Fig.1.  
 



 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Coordinate system , , , plane dielectric interface at 0, and schematic figures for 

transmitted waves. 
 
In Fig.2, we have shown the branch cuts associated with the branch points at    

sin  of the integrand and the original integration path  in (1) in the complex -plane.  
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Branch cuts associated with branch 
points at  ,    sin  and 
original integration   path  in the 
complex -plane. 

Fig.3 Steepest descent path  and 
 passing through saddle points at 

 and , respectively. 

2.2 Uniform Asymptotic Solution in Far and Shallow Regions 
 When the observation point ,  is placed in the far region from the source 0,  
and in the shallow region from the dielectric interface  0 the integrand in (1) possesses two 
saddle point   and  satisfying the saddle point equation / 0 or  

sin | |
sin cos

√ sin
0 (3)

We have shown in Fig.3 the steepest descent paths   and  passing through the saddle 
points   and , respectively. The integral in (1) may be represented as 
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,
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  (4)

The integral  along the steepest descent path  can be evaluated asymptotically by 
applying the isolated point technique [10]. The asymptotic solution may be given by  

4
2 | |√ , Re  (5)

By using (5), we have drawn the picture for the evanescent wave  excited by the 
incident geometrical ray  in Fig.1. While the first-order asymptotic solution for the integral 

 may be given by 

~ . 2
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This wave propagates along  as shown in Fig.1. It is very interesting to observe that 
the amplitude of .  in (6) behaves like a lateral wave [1]-[5], [7], [9]-[11] which is observed 
in the denser (upper) medium. Therefore, we define the first-order asymptotic solution .  in 
(6) as the lateral wave type geometrical ray. 
 One may note that when the observation point moves along  parallel to the 
interface 0, the first-order solution .  in (6) produces relatively large errors in the 
transition region between  and  (see Fig.1). Therefore, in order to derive the accurate solution 
we will represent the integral  in (4) as follows 

 . ,          .  (7)
Here,  approaches .  ( . ) or  approaches zero ( 0 ) as the 
observation point moves away from the transition region. Thus, we define  as the transition 
wave which plays an important role only in the transition region. Upon substituting (7) into (4), one 
may obtain the following novel uniform asymptotic solution for the transmitted wave.  

.  (8)
 It is remained to derive the asymptotic solution for  defined in (4). Since both the 
functions , corresponding to the reflection coefficient, and  possess the branch points at 

, sin  in the complex -plane, lengthy calculation is required. However, since the 
paper space is limited here, we will give only the final result for  in (4). The solution will be 
given by 
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where , , , and  used in the above equations are defined as follows. 
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As shown in (11), (12), and (14), , , and  are given by the integrals. However, these 
integrals for 1,2,3, … are expressed by using the parabolic cylinder function [12]. By using  
in (9), one may obtain the transition wave  in (8) (see (7)). 
 
3. Numerical Result and Discussions 
 In Fig.4, we have shown electric field magnitude vs. distance  curve. The solid curve 
(     ) is calculated by using the uniform asymptotic solution proposed in the present study. Note 
that the uniform asymptotic solution for the near region  including the transition region has 
been considered elsewhere [9].  
 It is shown in Fig.4 that the uniform asymptotic solution (     : solid curve) agrees 
excellently with the reference solution (     : open circles) calculated numerically from (1). Also 
shown in Fig.4 is the solution (     : chain-dot curve) calculated from the transition wave  
derived in (7) associated with (9). It is clarified that the transition wave plays an important role in 
the transition region  shown in Fig.1 and Fig.4. It is observed that the electric field 



magnitude oscillates as the function of  in the range  due to the interference of the 
evanescent wave , the lateral wave type geometrical ray . , and the transition wave 

. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Comparison of asymptotic solution with reference solution. Numerical parameters used in 

the calculation: 200 , 0.3 , 3GHz, 2.3 , , 0.659. 
 
4. Conclusion 
 We have derived the uniform asymptotic solution for the transmitted and scattered waves 
observed in the rarer medium when the cylindrical wave is incident on the dielectric interface from 
the denser medium. We have shown the validity and utility of the uniform asymptotic solution by 
comparing with the reference solution calculated by the numerical integration. It is clarified that the 
transition wave plays an important role in the transition region. Also shown is the physical 
interpretation of the asymptotic solution proposed in the present study. 
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