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Abstract—Let us introduce n (≥ 2) mappings fi(i =
1, 2, · · · , n ≡ 0) defined on Banach spaces Xi−1 (i =
1, 2, · · · , n ≡ 0), respectively, and let fi : Xi−1 → Yi be
completely continuous on bounded convex closed subsets
X(0)

i−1 ⊂ Xi−1. Moreover, let us introduce n set-valued map-
pings Fi : Xi−1 × Yi → F (Xi)(the family of all non-empty
compact subsets of Xi), (i = 1, 2, · · · , n ≡ 0). Here, we have
a fixed point theorem on the successively recurrent sys-
tem of set-valued mapping equations:xi ∈ Fi(xi−1, fi(xi−1)),
(i = 1, 2, · · · , n ≡ 0). This theorem can be applied imme-
diately to analysis of the availability of system of circular
networks of channels undergone by uncertain fluctuations
and to evaluation of the tolerability of behaviors of those
systems. In this paper, mathematical situation and detailed
proof in weak topology are discussed, about this theorem.

1. Introduction

In general, by the set-valued mapping F defined on a Ba-
nach space X is meant a correspondence in which a set F(x)
in a space Y is specified in correspondence to any point x
in X.In particular, when F(X) ⊂ X, and if there exists a
point x∗ such that x∗ ∈ F(x∗), x∗ is called a fixed point of F
[1]. The author gave some types of discussions of uncertain
fluctuation problems of nonlinear mapping equations, say
y = f (x), where f is a completely continuous on X, giving a
composition type of fixed point theorem: x∗ ∈ F(x∗, f (x∗))
[2, 3]. This type of fixed point theorem has been applied by
the author himself vigorously to many important problems
as mathematical foundations of sensitivity analysis, mod-
eling and simulation synthesis, security analysis, tolerable
communication system analysis and design, and so on [1].
Thereafter, the author gave more refined type of fixed point
theorems for the system of set-valued mapping equations,
in order to treat with more complex systems [4]-[9].

In complex large-scale so called as multi-media network
systems, the successively recurrent circular connectin of
channels often plays an important role as a typical element
network of local area networks(LAN). However, in large-
scale circular networks, whenever some undesirable devia-
tions are induced into their element channels, even if their
influences are originally small to every element channel it-
self, total affections may be successively accumulated step
by step, and as results, may grow so serious that the net-

work itself becomes useless. Therefore, we must carefully
evaluate and control those deviations such that overall be-
haviors of respective channel outputs can be led, in real
time, into “available” or “tolerable” regions assigned in ad-
vance.

In such a reason, the author thereafter presented a fixed
point theorem for a successively recurrent system of set-
valued mapping equations, with its detailed proof, under a
natural assumption, and refered to available behaviors of
signals to be appeared in every portion of succesively re-
current circular channels disturbed by undesirable uncer-
tainties [10]. This paper is its refined theory of the same
problem under more wide conditions, through a precise de-
duction in weak topology.

2. Fixed Point Theorem for Successively Recurrent-
System of Set-Valued Mapping Equations

Here, we will present a refined theory of the fixed point
theorem for the succesively recurrent system of set-valued
mapping equations, with the proof in weak topology.

For the first step, let us introduce reflexive real Banach
spaces Xi (i = 1, . . . , n ≡ 0), in which the norm is repre-
sented by ∥ · ∥, and also, let us define there non-empty
bounded closed convex subsets X(0)

i (i = 1, . . . , n ≡ 0). Let
X′i be the dual space of Xi and let us introduce a weak topol-

ogy σ
(
Xi, X′i

)
into Xi. Then, Xi is locally convex topolog-

ical linear space,and therefore, X(0)
i is weakly closed and

weakly compact. Further, let us consider another real Ba-
nach space Yi ( j = 1, . . . , n ≡ 0) in which the norm is rep-
resented by ∥ · ∥.

Now, let us introduce n (≥ 2) mappings
fi (i = 1, . . . , n ≡ 0) defined on Xi−1 (i = 1, . . . , n ≡ 0),
respectively, and let fi : Xi−1 → Yi be com-
pletely continuous on bounded convex closed subset
X(0)

i−1 ⊂ Xi−1 (i = 1, . . . , n ≡ 0) (Figure 1).
Moreover, let us introduce n set-valued mappings Fi :

Xi−1 × Yi → F(Xi) (the family of all non-empty compact
subsets of Xi) (i = 1, . . . , n ≡ 0).

Here, we can recognize that for any xi−1 ∈ X(0)
i−1

and fi (xi−1) ∈ Yi, we have F(0)
i (xi−1; fi(xi−1))

△
=

F(0)
i (xi−1; fi(xi−1)) ∩ X(0)

i , ϕ, and moreover, there exist
projection points x̃′i of arbitry point x′i ∈ X(0)

i upon the set
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Figure 1: Successively recurrent connection of Banach
spaces Xi and mappings fi (i = 1, · · · , n ≡ 0).

F(0)
i (xi−1; fi(xi−1)) such that∥∥∥x̃i

′ − x′i
∥∥∥ = min{

∥∥∥x′i − zi

∥∥∥ |
zi ∈ F(0)

i (xi−1; fi(xi−1))}. (1)

Now, let us introduce a series of assumptions:

Assumption 1 Let the mapping fi : X(0)
i−1 → fi(X

(0)
i−1) ⊂ Yi

be completely continuous in the sense that when a weakly
convergent net {xνi } (ν ∈ J : a directive set) weakly con-
verges to x̄i, then the sequence { fi(xνi−1)} has a subsequence
which strongly converges to fi(x̄i−1) in Yi.

Assumption 2 Let the set-valued mapping Fi : X(0)
i−1×Yi →

F (Xi) (a family of all non-empty compact subsets of Xi) sat-
isfies the following Lipschits condition wth respect to the
Hausdorff distance dH , that is, there are two kinds of con-
stants ai > 0 and bi > 0 such that for any x(1)

i−1, x
(2)
i−1 ∈ Xi−1

and for any y(1)
i , y

(2)
i ∈ Yi, Fi satisfied the inequality

dH

(
Fi(x(1)

i−1; y(1)
i ), Fi(x(2)

i−1; y(2)
i )
)

≤ ai ·
∥∥∥x(1)

i−1 − x(2)
i−1

∥∥∥ + bi ·
∥∥∥y(1)

i − y(2)
i

∥∥∥ , (2)

where Lipschitz constants ai (i = 1, . . . , n ≡ 0) are confined
by

0 < a1 · a2 · . . . · an < 1. (3)

Here, the Hausdorff distance dH between two sets S 1 and
S 2 is defined by

dH (S 1, S 2)
△
= max

{
sup{d(x1, S 2)|x1 ∈ S 1},

sup{d(x2, S 1)|x2 ∈ S 2}
}
,

(4)

where d (x, S )
△
= inf{∥x − z∥ |z ∈ S } is the distance between

a point x and a set S .

Then, under these preparations, we have an important
lemma on the system of set-valued mapping equations:

xi ∈ Fi(xi−1; fi(xi−1)), (i = 1, . . . , n ≡ 0). (5)

Lemma 1 For all i (i = 1, . . . , n ≡ 0), let us adopt arbi-
trary points x(0)

i ∈ X(0)
i and also fix all values of fi(x(0)

i−1) (i =
1, . . . , n ≡ 0). Now, for every i, let us consider a sequence
{x(ν)

i }(ν = 0, 1, 2, . . .) starting from the above adopted point
x(0)

i , and with each x(ν)
i ∈ X(0)

i as the projection point of
x(ν−1)

i ∈ X(0)
i upon the set Fi(x(ν−1)

i−1 ; fi(x(0)
i−1)), but for any

number m ≥ 1 (m ≤ n − i), x(ν)
i+m ∈ X(0)

i+m is specified
as the projection point from x(ν−1)

i+m ∈ X(0)
i+m upon the set

Fi(x(ν)
i+m−1; fi+m(x(0)

i+m−1)). Then, these sequences {x(ν)
i } (i =

1, . . . n ≡ 0; ν = 0, 1, 2, . . .) are Cauchy sequences, having
their own limit points x̄i ∈ X(0)

i , respectively, such that

x̄i ∈ F(0)
i (x̄i−1; fi(x(0)

i−1)), (i = 1, . . . , n ≡ 0). (6)

All limit points x̄i (i = 1, . . . , n ≡ 0) depend on their
starting points x(0)

i and parameters y(0)
i
△
= fi(x(0)

i−1), respec-
tively. These correspondences may be multi-valued, in
general, and hence, can be represented by set-valued con-
tinuous mappings defined on each domain:

x̄i ∈ Hi(x(0)
i , y

(0)
i ), (i = 1, . . . , n ≡ 0). (7)

If these mappings have fixed points x∗i in respective do-
main, or in respective bounded convex closed subsets X(0)

i
: i.e.,

x∗i ∈ Hi(x∗i ; y∗i ) ∈ X(0)
i , (i = 1, . . . , n ≡ 0), (8)

where y∗i
△
= fi(x∗i−1), these relations imply that

x∗i ∈ F(0)
i (x∗i−1; fi(x∗i−1)), (i = 1, . . . , n ≡ 0). (9)

This result means that the solution set {x∗i } (i = 1, . . . , n ≡
0) of the system of set-valued nonlinear mapping equations
(5):

xi ∈ Fi(xi−1; fi(xi−1)), (i = 1, . . . , n ≡ 0) (10)

can be obtained in connection with the set of limit points
{x̄i} (i = 1, . . . , n ≡ 0) of Cauchy sequences {x(ν)

i } (i =
1, . . . , n ≡ 0; ν = 0, 1, 2, . . .).

Here, in order to verify the existance of the fixed point
x∗i of Hi, from the stand point refined in the weak topology,
now, it is very convenient to apply the well-known fixed
point theorem for set-valued mapping:

Lemma 2 (Ky Fan [11]) Let Xi be a locally convex topo-
logical linear space, and X(0)

i be a non-empty convex com-
pact subset of Xi. Let Hc(X(0)

i ) be the family of all non-
empty closed convex subsets of X(0)

i . Then, for upper semi-
continuous set-valued mapping Hi : X(0)

i → Hc(X(0)
i ), there

exists a fixed point x∗i ∈ X(0)
i such that x∗i ∈ Hi(x∗i ).

In order to apply this lemma to our problem, we must
verify that the above-defined set-valued mapping Hi(xi) ≡
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Hi(xi; y(0)
i ) is upper semicontinuous, and its range is closed

and convex.
In the first place, the closedness of the range of

Hi(xi; y(0)
i ) is easily verified from Assumption 2. For the

verification of the convexity, it is sufficient to add the fol-
lowing assumption:

Assumption 3 (Rockafellar [12]) For any x(1)
i−1, x

(2)
i−1 ∈

X(0)
i−1, and for any constant r (0 < r < 1), uniformly with

respect to every yi ∈ Yi, Fi satisfies the relation:

r · Fi(x(1)
i−1; yi) + (1 − r) · Fi(x(2)

i−1; yi)
⊂ Fi(r · x(1)

i−1 + (1 − r) · x(2)
i−1; yi).

(11)

In fact, under Assumption 3, we have

rx(1)
i + (1 − r)x(2)

i
∈ r · Fi(x(1)

i−1; yi) + (1 − r) · Fi(x(2)
i−1; yi)

⊂ Fi(r · x(1)
i−1 + (1 − r) · x(2)

i−1; yi),
(12)

for any x(ν)
i ⊂ Fi(x(ν)

i−1; yi) (ν = 1, 2): i.e., for any x(ν)
i ∈

Hi(x(ν)
i , yi) (ν = 1, 2). This relation means the convexity of

Hi(xi; yi).
Lastly, in order to verify the upper semicontinuity, we

should prove that if an arbitrary weakly convergent net
{xνi } (ν ∈ J) in X(0)

i weakly converges to x̄i and if the weakly
convergent net {zνi } (ν ∈ J) in X(0)

i made from zνi ∈ Hi(xνi )
weakly converges to z̄i, we have z̄i ∈ Hi(x̄i).

For this purpose, we can use the following lemma:

Lemma 3 (Nadler[13]) Let Xi be a Banach space, and let
Gνi (ν ∈ J) and Ḡi : Xi → Fc(Xi) (the family of all non-
empty compact subsets of Xi) be set-valued mappings con-
tracting with respect to the Hausdorff distance dH : e.g.,
there exists a constant ai (0 < ai < 1) such that for any
z(1)

i , z
(2)
i ∈ Xi, Gi satisfies the inequality

dH

(
Gνi (z(1)

i ),Gνi (z(2)
i )
)
≤ ai

∥∥∥z(1)
i − z(2)

i

∥∥∥ . (13)

Now, let {Gνi } be uniformly convergent to Ḡi in the distance
dH . Let zνi be fixed point of Gνi . Then, we can find that the
sequence {zνi } (ν ∈ J) has a convergent subsequence {zνmi }
and its limit point z̄i is a fixed point of Ḡi : z̄i ∈ Ḡi(z̄i).

From Assumprion 1, we remember that when any
weakly convergent net {xνi } (ν ∈ J) weakly converges to x̄i,
the net { fi(xνi−1)} has a subsequence { fi(xνmi−1)} strongly con-
vergent to fi(x̄i−1). On the other hand, from Assumption 2,
we have

sup
xi−1∈Xi−1

dH

(
Fi(xi−1; fi(xνmi−1)), Fi(xi−1; fi(x̄i−1))

)
≤ bi ·

∥∥∥ fi(xνmi−1) − fi(x̄i−1)
∥∥∥→ 0.

(14)

This implies that the sequence of set-valued map-
pings {F(0)

i (xi−1; fi(xνmi−1))} uniformly converges to
F(0)

i (xi−1; fi(x̄i−1)), in the distance dH . Thus, from

this deduction, substituting Gνi ,G
νm
i and Ḡi of

Lemma 3, by F(0)
i (zi−1; fi(zνi−1)), F(0)

i (zi−1; fi(zνmi−1)) and
F(0)

i (zi−1; fi(z̄i−1)), respectively, we can apply Lemma
3, and hence, we find that the sequence of fixed points
{zνmi } : zνmi ∈ F(0)

i (zνmi−1; fi(zνmi−1)), i.e., zνmi ∈ Hi(zνmi ), strongly,
and therefore, weakly converges to the fixed point

z̄i : z̄i ∈ F(0)
i (z̄i−1; fi(z̄i−1)),

i.e., z̄i ∈ Hi(z̄i).
As a result, we have the theorem:

Theorem 1 Let Xi be a reflexive real Banach space, and
X(0)

i be a non-empty bounded closed convex subset of Xi.
By the dual space X′i , let us introduce a weak topology
σ(Xi, X′i ) into Xi. Let fi and Fi be deterministic and set-
valued mappings, respectively, which satisfy the series of
Assumptions 1 to 3. Then, we have a Cauchy sequence
{xνi } ⊂ X(0)

i (ν = 0, 1, 2, . . .), introduced by the succes-
sive procedure in Lemma 1. This sequence has a set of
limit points {x̄i}, and we can define a set-valued map-
ping Hi by the correspondence from the arbitrary start-
ing point z(0)

i ≡ xi ∈ X(0)
i to the set of limit points {x̄i} in

X(0)
i : x̄i ∈ Hi(xi). This set-valued mapping Hi has a fixed

point x∗i in X(0)
i , which is, in turn, the solution of the system

of set-valued mapping equations (10).

3. An Application to Systems of Successively Recurrent
Circular Channels with Uncertainties

The fixed point theorem above-derived can be applied
immediately to analysis of the availability of system of suc-
cessively recurrent circular channels with uncertainties and
to evaluation of the tolerability of behaviors of those sys-
tems. Let us consider a successively recurrent circular sys-

hi(xi�1; u0i�1) gi(wi�1; pi) hi+1(xi; u0i )
Operator (i � 1)ofStation (i � 1) Operator (i)ofStation (i)Channel (i)

u0i�1 pi u0iinput signal input signalinternal statevetor parameterxi = fi(xi�1) 4= gi(hi(xi�1))
xi�1 wi�1 xi wi

Figure 2: The successively recurrent circular chain of sta-
tions (i) and channels (i) (i = 1, 2, · · · , n ≡ 0)

tem of communication channels which consists of n sta-
tions and n unilateral channels (Figure 2). The station (i)
is operated by operator (i), (i = 1, 2, · · · , n ≡ 0). Thus, in
consideration of the output signal xi−1 of the channel (i−1),
the operator (i − 1), at the station (i − 1), operates his own
input signal u0

i−1 and gives the input signal wi−1 into the
channel (i). The channel (i) transfers this input signal wi−1
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to the output side as an input signal xi of the station (i). The
function of the operator (i − 1) is described as

wi−1 = hi(xi−1, u0
i−1), (15)

and the function of the channel (i) is described as

xi = gi(wi−1, pi), (16)

where pi denotes the internal state vector parameter of
channel (i), representative of whole internal structures and
parameters. For fixed u0

i−1 and pi, functions hi and gi can
be abbreviated as hi(xi−1) and gi(wi−1), respectively. Inci-
dentally, we denote

fi(xi−1)
△
= gi(hi(xi−1)). (17)

When uncertainty may be induced into the internal state
vector parameter pi, then the original function fi(xi−1) of
the channel (i) is diversified in the form of the set-valued
mapping:

Fi(xi−1, fi(xi−1))
△
= Gi(hi(xi−1), fi(xi−1))

≡ Gi(hi(xi−1), gi(hi(xi−1))). (18)

Thus, the behavior of the channel (i) can be described in
the form of Eq.(5), and therefore, the analysis of this type
of succesively recurrent system of unilateral channels dis-
turbed by undesirable uncertainties are successfully accom-
plished, by immediate application of the above-described
fixed point theorem for system of set-valued mappings.

4. Concluding Remarks

The solution set {x∗i }(i = 1, 2, · · · , n ≡ 0) in {X(0)
i }(i =

1, 2, · · · , n ≡ 0) of the system of equations (10) can be
recognized as available behaviors of signals to be ap-
peared at output-terminals of unilateral channels {(i)}(i =
1, 2, · · · , n ≡ 0). Here, “available behavior” means that so-
lutions x∗i appear in each “tolerable” region X(0)

i assigned in
advance, and behaviors represented by solutions x∗i can be
considered as available for real performances of channels
undergone by undesirable uncertain fluctuations.
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