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Abstract– We study interstate switchings induced by 
noise in nonlinear micromechanical oscillators. Under 
sufficiently strong periodic excitation, nonlinear 
micromechanical oscillators possess multiple oscillation 
states that have different amplitudes and phases. The 
presence of noise makes it possible for the system to 
switch between these states. Our data demonstrate that the 
dependence of the interstate switching rate on device 
parameters is qualitatively different for Gaussian noise and 
Poisson pulses. 

 
 

1. Introduction 
 

In micro- and nano-systems, the interplay of noise and 
nonlinearity often yields novel phenomena. These 
phenomena are of both fundamental and practical interest 
because they can potentially offer new functionalities and 
improve the performance of sensors. For instance, when  
nonlinear resonators are subjected to sufficiently strong 
periodic driving, multistability develops. Fluctuations can 
induce the system to escape from one metastable 
oscillation state into the other, with the escape rate given 
by W = C exp(-Q), where C is the prefactor that is largely 
independent of noise intensity and Q is the switching 
exponent. For the most common case of Gaussian noise, 
the switching has been shown to follow Kramer’s equation 
so that Q = R/D, where R is the activation barrier and D is 
the noise intensity [1-7]. 
 

Here, we explore activated switching out of nonlinear 
micromechanical oscillators that are periodically driven 
into bistability [8]. Between the bifurcation frequencies 
ωb1 and ωb2, two stable oscillation states coexist [5]. As 
the driving frequency ωd is tuned towards the bifurcation 
value ωb, one of the two stable oscillation states merges 
with the unstable state and the system becomes 
monostable. We focus on revealing the differences in 
switching induced by Gaussian noise and Poisson pulses. 
For Gaussian white noise, the switching rate obeys the 
Arrhenius relation, with Q ∝  1/DG, where DG is the 
intensity of the Gaussian noise. In contrast, for Poisson 
pulses, we observe a logarithmic dependence of Q on the 

Poisson noise intensity Dp, when we vary Dp by tuning the 
mean rate ν of the pulses. Theoretical analysis [9] 
predicted that Gaussian and Poisson pulses yield different 
dependence of Q on frequency detuning ∆ω = ωd – ωb. We 
observe that Q exhibits a power law dependence Q ∝  
(∆ω)η for Gaussian noise, with the measured value of η 
consistent with the predicted value of 3/2 for saddle-node 
bifurcations, as verified by a number of other experiments 
[5,8]. For Poisson noise, it is expected that instead of a 
simple power law dependence, Q depends on the square 
root of ∆ω with an additional logarithmic factor [9].  
 
 
2. Experimental Setup 
 
2.1. Micromechanical resonator 
 

Figure 1(a) shows a scanning electron micrograph of 
our device that consists of a polycrystalline silicon beam 
100 µm by 1.2 µm by 1.5 µm suspended above the 
substrate [8]. A close-up of one end of the beam is shown 
in Fig. 1(b). Both ends of the beam are anchored to the 
substrate. When an ac current is passed through the beam 
in a perpendicular magnetic field of 5T, vibrations of the 
beam in its in-plane fundamental mode can be excited by 
the Lorentz force. Motion of the beam generates an 
electromotive force that changes the transmitted ac power. 
  
 
2.1. Duffing resonator: Nonlinearity and hysteresis 
 

The beam can be modeled as a Duffing oscillator of the 
form 

)()cos(2 32 tfthqqqq do +=++Γ+ ωβω&&&  (1) 

 
where q is the normalized displacement, Γ = 96 rad s-1 is 
the damping coefficient, ωo = 7,133,339 rad s-1 is the 
resonant frequency, β = 2.3x109 m-1s-2  is the coefficient of 
the cubic nonlinearity, h and ωd are respectively the 
amplitude and frequency of the external driving force, and 
f(t) is the noise force.  
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As shown in Fig. 1(c), at small oscillation amplitudes, 
the resonator behaves as a simple harmonic oscillator. As 
the driving field increases, the resonance peak tilts 
towards high frequencies. When the oscillation amplitude 
exceeds the critical value, the resonator develops 
bistability in its frequency response due to the cubic term 
in Eq. (1). Within a certain range of driving frequencies 
(between ωb1 and ωb2), there are two stable dynamic states 
with different oscillation amplitude and phase [Fig. 1(c)].  

 
 

 
 

Fig. 1 (a) Schematic of the experimental setup (b) Scanning 
electron micrograph of one end of the doubly-clamped silicon 
beam. (c) The dependence of oscillation amplitude on driving 
frequency detuning ∆ω. In order of ascending amplitude, the 
curves correspond to linear, critical and nonlinear responses. All 
3 curves are normalized to the amplitude of the critical response. 
 
 
2.2. Generating the noise voltages 

 
Next, we fixed the driving frequency at a value in the 

bistable region close to the lower bifurcation frequency 
ωb1, with frequency detuning ∆ω = ωd - ωb1. By injecting 
noise in the driving force, the oscillator can be induced to 
escape from the low-amplitude state into the high-
amplitude state. In our experiment, we apply two different 
types of noise: Gaussian or Poisson. To create the 
Gaussian noise voltage, we amplify the Johnson noise of a 
50 ohm resistor. When this voltage is applied to one of the 

electrodes next to the beam [Figs. 1(a) and 1(b)], a 
random electrostatic noise force is exerted on the 
oscillating beam.  

 
Generating Poisson noise requires additional circuitry 

[8]. The Gaussian noise is used to trigger a pulse generator. 
Whenever the Gaussian noise voltage exceeds a 
predetermined threshold, the pulse generator outputs a 
square pulse of fixed height and duration. For each single 
pulse, the width (tg = 400 µs) is much smaller than the 
mean time between successive pulses (from 30 ms to 200 
ms). This train of voltage pulses is then used to amplitude-
modulate a sinusoidal rf voltage at the driving frequency 
of the resonator. This Poisson noise voltage is then applied 
to the electrode to create the noise force electrostatically. 

 
 

3. Interstate switching 
 
Next, we apply the Gaussian noise and Poisson pulses 

to the resonator and measure the switching rate W for 
different noise intensities at a fixed frequency detuning 
∆ω. For Gaussian noise, Fig. 2(a) shows that –log W 
depends linearly on the inverse noise intensity 1/DG, 
where DG is given by: 
   

( ) ( ) ( )tftfttDG ′=′−∂2      (2) 

 
Figure 2(a) confirms that interstate switching of our 
resonator under Gaussian noise obeys Arrhenius relations 
and is activated in nature.  
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Fig. 2. (a) The dependence of –log W on 1/DG for Gaussian noise. 
The frequency detuning ∆ω is 3.14 rad s-1. The solid line is a linear 
fit. (b) –log W as a function of 1/ν  at ∆ω = 12.56 rad s-1 for rf-
modulated Poisson pulses. The noise intensity is proportional to the 
mean pulse rate ν, provided that the height of the pulses is kept 
constant. Inset: the same data plotted vs log(1/ν). 
 
 

The intensity of Gaussian noise is characterized by a 
single quantity DG according to Eq. (2). For Poisson noise, 
however, the intensity DP depends on both the mean rate 
of pulses ν and the area under each pulse g. In our 
experiment, we change ν  and maintain both the height 
and the duration of the pulses fixed so that g remains 
constant. Figure 2(b) plots –log W as a function of 1/ν for 
Poisson rf pulses. The dependence is clearly sub-linear. 
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Instead, if we replace 1/ν by log(1/ν) on the x axis, a 
much improved linear fit [inset in Fig. 2(b)] is obtained. 
Since the Poisson noise intensity DP is proportional to ν, 
Fig. 2(b) shows that -logW is proportional to the logarithm 
of reciprocal of the noise intensity log(1/DP) as the pulse 
rate is varied. Our observation indicates that there are 
qualitative differences in the interstate switchings induced 
by Poisson pulses and Gaussian noise. 
 

 
 
Fig. 3. Near a bifurcation point, the motion in the 2D phase 
space of slow variables can be mapped onto a 1D potential of the 
form ψ(x) = -x3/3+ ηx. For Gaussian noise, switching is induced 
when a large outburst of noise overcomes the deterministic force 
from the barrier R = 4η3/2/3. For Poisson noise, each pulse 
translates the system by a distance dp along x. The system can 
reach the saddle point if no = do/dp pulses occur during the 
relaxation time. 

 
 
Near bifurcation points, the motion of our resonator can 

be mapped onto that of a Brownian particle in a 1D 
potential of the form ψ(x) = -x3/3+ η x, where η is the 
system parameter that decreases to zero at the bifurcation 
point (Fig. 3) [10]. Gaussian noise and Poisson noise 
induce switching out of the metastable state through 
qualitatively different mechanisms [8,9]. For Gaussian 
noise, switching is induced when a large outburst of noise 
overcomes the deterministic force from the barrier. For the 
effective potential ψ(x), the barrier height scales as η3/2. 
The switching rate is given by )exp( Q−∝Γ . For 

Gaussian noise, QG = 4η3/2/3DG where DG is the noise 
intensity. For Poisson noise, provided that the duration of 
a pulse is much shorter than the relaxation time of the 
system, prior theoretical and experimental works have 
shown that each pulse translates the system by a fixed 
distance dp in the X-Y phase space [9,11]. For potential 
ψ(x), the separation between the metastable state and the 
saddle point is do = 2η1/2. The system can reach the saddle 
point if no = do/dp pulses occur during the relaxation time 
tr before the system relaxes back to the metastable state. 
Such probability can be obtained using Poisson’s 

distribution ( ) ( ) ( ) !exp, or
n

rro ntttnP o υυ −= , yielding an 

estimate for the switching exponent:    
 

  )~/log()~/2( 2/1 υκηη ggQP = ,      (3) 

 
where υ  is the mean rate of pulses, g~  is the effective 

pulse area in phase space and κ is a constant. Here, the 
η1/2 factor originates from the square root dependence of 
do on η. Figure 3 illustrates the different mechanisms for 
switching induced by Gaussian and Poisson noise. QP and 
QG exhibit different dependence on η and the noise 
intensity, indicating that the noise statistics affect the 
dependence of the switching rates on device parameters. 

 
 

4. Summary 
 
We study noise induced switchings in nonlinear 

micromechanical oscillators periodically driven into 
bistabiliy. Our data demonstrate that the dependence of 
the interstate switching rate on device parameters is 
qualitatively different for Gaussian noise and Poisson 
pulses. The findings could create new opportunities for 
using driven nonlinear systems as detectors for non-
Gaussian noise.  

 
 

Acknowledgments 
 

This work was supported by a grant from the Research 
Grants Council of the Hong Kong Special Administrative 
Region, China (Project No. 600312) and by the NSF 
through Grant No. CMMI-0856374. 
 
 
References 
 
[1] L. J. Lapidus, D. Enzer and G. Gabrielse, Stochastic 

phase switching of a parametrically driven electron 
in a Penning trap, Phys. Rev. Lett. 83, 899 (1999). 

[2] I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. 
Metcalfe, C. Rigetti, L. Frunzio and M. H. Devoret, 
Rf-driven Josephson bifurcation amplifier for 
quantum measurement, Phys. Rev. Lett. 93, 207002 
(2004). 

[3] J. S. Aldridge and A. N. Cleland, Noise-enabled 
precision measurements of a duffing nanomechanical 
resonator, Phys. Rev. Lett. 94, 156403 (2005). 

[4] R. Gommers, P. Douglas, S. Bergamini, M. 
Goonasekera, P. H. Jones and F. Renzoni, Resonant 
activation in a nonadiabatically driven optical lattice, 
Phys. Rev. Lett. 94, 143001 (2005). 

[5] C. Stambaugh and H. B. Chan, Noise-activated 
switching in a driven nonlinear micromechanical 
oscillator, Phys. Rev. B 73, 172302 (2006). 

[6] K. Kim, M. S. Heo, K. H. Lee, K. Jang, H. R. Noh, D. 
Kim and W. Jhe, Spontaneous symmetry breaking of 

- 746 -



   

population in a nonadiabatically driven atomic trap: 
An Ising-class phase transition, Phys. Rev. Lett. 96, 
150601 (2006). 

[7] A. Lupascu, S. Saito, T. Picot, P. C. De Groot, C. J. P. 
M. Harmans and J. E. Mooij, Quantum non-
demolition measurement of a superconducting two-
level system, Nature Physics 3, 119 (2007). 

[8] J. Zou, S. Buvaev, M. Dykman and H. B. Chan, 
Poisson noise induced switching in driven 
micromechanical resonators, Phys. Rev. B 86, 
155420 (2012). 

[9] L. Billings, I. B. Schwartz, M. McCrary, A. N. 
Korotkov and M. I. Dykman, Switching Exponent 
Scaling near Bifurcation Points for Non-Gaussian 
Noise, Phys. Rev. Lett. 104, 140601 (2010). 

[10] M. I. Dykman and M. A. Krivoglaz, Theory of 
fluctuational transitions between the stable states of a 
non-linear oscillator, Zh. Eksper. Teor. Fiz. 77, 60 
(1979). 

[11] Q. P. Unterreithmeier, T. Faust and J. P. Kotthaus, 
Nonlinear switching dynamics in a nanomechanical 
resonator, Phys. Rev. B 81, 241405 (2010). 

 
 

- 747 -


	Navigation Page
	Session at a glance

