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Abstract— We study interstate switchings induced bjoisson noise intensify,, when we vanp, by tuning the
noise in nonlinear micromechanical oscillators. &ndmean ratev of the pulses. Theoretical analysis [9]
sufficiently  strong  periodic  excitation, nonlineapredicted that Gaussian and Poisson pulses yiéfletetit
micromechanical oscillators possess multiple csodh dependence & on frequency detunindw= a — a,. We
states that have different amplitudes and phasée @gbserve thatQ exhibits a power law dependen@l]
presence of noise makes it possible for the sysi®m(ay’ for Gaussian noise, with the measured valug of
switch between these states. Our data demonshi@t¢he consistent with the predicted value of 3/2 for dadubde
dependence of the interstate switching rate on ceevpifurcations, as verified by a number of other eipents
parameters is qualitatively different for Gaussiaise and [5,8]. For Poisson noise, it is expected that mdtef a
Poisson pulses. simple power law dependend®, depends on the square

root of Awwith an additional logarithmic factor [9].

1. Introduction
2. Experimental Setup

In micro- and nano-systems, the interplay of naird
nonlinearity often vyields novel phenomena. Thegel. Micromechanical resonator
phenomena are of both fundamental and practicatdst
because they can potentially offer new functiofesditand  Figure 1(a) shows a scanning electron micrograph of
improve the performance of sensors. For instandeenwour device that consists of a polycrystalline sitidoeam
nonlinear resonators are subjected to sufficiestyng 100 pm by 1.2 um by 1.5 um suspended above the
periodic driving, multistability develops. Flucti@ts can substrate [8]. A close-up of one end of the beashsvn
induce the system to escape from one metastghleig. 1(b). Both ends of the beam are anchoreth¢o
oscillation state into the other, with the escagte given substrate. When an ac current is passed througbethm
by W = C exp(-Q)whereC is the prefactor that is largelyin a perpendicular magnetic field of 5T, vibratiasfsthe
independent of noise intensity ar@ is the switching beam in its in-plane fundamental mode can be akdite
exponent. For the most common case of Gaussia®,naise Lorentz force. Motion of the beam generates an

the switching has been shown to follow Kramer'samn electromotive force that changes the transmitteploaeer.
so thatQ = R/D, whereR is the activation barrier arid is

the noise intensity [1-7].
2.1. Duffing resonator: Nonlinearity and hysteresis
Here, we explore activated switching out of nordine

micromechanical oscillators that are periodicallyven The beam can be modeled as a Duffing oscillatdthef
into bistability [8]. Between the bifurcation fregpcies form

wy and @y, two stable oscillation states coexist [5]. As . 2 3 _

the driving frequencyy is tuned towards the bifurcation G+arq+arg+ Ao = hCOS@dt) O @
value «, one of the two stable oscillation states merges ) ) ) )
with the unstable state and the system becomigered is the normalized displacemeift= 96 rad Sis
monostable. We focus on revealing the differenges the damping coefficientzy, = 7,133,339 rad Sis the
switching induced by Gaussian noise and Poissosepul resonant frequencyg = 2.3x16 m's? is the coefficient of
For Gaussian white noise, the switching rate oltbgs the cubic nonlinearityh and ay are respectively the
Arrhenius relation, withQ Ll 1/Dg, where Dg is the amplitude and frequency of the external drivingcérand
intensity of the Gaussian noise. In contrast, foison f(t) is the noise force.

pulses, we observe a logarithmic dependend® oh the
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As shown in Fig. 1(c), at small oscillation amplies, electrodes next to the beam [Figs. 1(a) and 1(a)],
the resonator behaves as a simple harmonic oscillds random electrostatic noise force is exerted on the
the driving field increases, the resonance peats tibscillating beam.
towards high frequencies. When the oscillation ationghé
exceeds the critical value, the resonator developsGenerating Poisson noise requires additional dmgui
bistability in its frequency response due to thbicuerm [8]. The Gaussian noise is used to trigger a pudserator.
in Eq. (1). Within a certain range of driving freamcies Whenever the Gaussian noise voltage exceeds a
(betweenay, and i), there are two stable dynamic stategredetermined threshold, the pulse generator caitput
with different oscillation amplitude and phase [Figc)].  square pulse of fixed height and duration. For esacgle
pulse, the widthtf = 400 us) is much smaller than the
mean time between successive pulses (from 30 8800
ms). This train of voltage pulses is then usedhplaude-
modulate a sinusoidal rf voltage at the drivingyfrency
of the resonator. This Poisson noise voltage is #pplied

Or o to the electrode to create the noise force eldettioally.

Poisson pulses

(a) Gaussian noise

3. Interstate switching

Next, we apply the Gaussian noise and Poisson gulse
to the resonator and measure the switching Ystéor
different noise intensities at a fixed frequencyudéag
Aw For Gaussian noise, Fig. 2(a) shows thltg W
depends linearly on the inverse noise intenditi)g,
whereDg is given by:

2Dga(t-t')=(f(t)f (")) )

Figure 2(a) confirms that interstate switching air o

“c) b2 resonator under Gaussian noise obeys Arrheniusaorsa
/ and is activated in nature.
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Fig. 1 () Schematic of the experimental setup §bjnning 0.003 0.006 015 0.25
electron micrograph of one end of the doubly-claghgéicon v (s)
beam. (c) The dependence of oscillation amplitudeddving G vis

frequency detuningda In order of ascending amplitude, th
curves correspond to linear, critical and nonlinesponses. All
3 curves are normalized to the amplitude of theécetiresponse.

q:ig. 2. (a) The dependence-dbg Won 1/Dg for Gaussian noise.
The frequency detuninfwis 3.14 rad S The solid line is a linear
fit. (b) —log Was a function of/A/ atAw= 12.56 rad & for rf-
modulated Poisson pulses. The noise intensityojggational to the
mean pulse rate, provided that the height of the pulses is kept

2.2. Generating the noise voltages constant. Inset; the same data plottelbg&l/v).

Next, we fixed the driving frequency at a valuetlie
bistabl_e region close to t_he lower bifurcatio_n _ffel_lcy The intensity of Gaussian noise is characterizeda by
apy, With frequency detunindw= ay- ay. By injecting  gingle quantityDg according to Eq. (2). For Poisson noise,

escape from the Iow-ampl_itude state into the_ high pulses v and the area under each puigeln our
amplitude state. In our experiment, we apply twitedént o, eriment, we change and maintain both the height

tC);/pes of noise: (Iiaussian or IPOitShSOg' hTO crr?o;ue d the duration of the pulses fixed so thatemains
aussian noise voltage, we amplify the Johnsoreralis .o Figure 2(b) plotdog Was a function of 1/for

50 ohm resistor. When this voltage is applied te ofithe Poisson rf pulsesThe dependence is clearly sub-linear.
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Instead, if we replace &/by log(1#) on the x axis, a
much improved linear fit [inset in Fig. 2(b)] is wined.
Since the Poisson noise intendy is proportional tov,
Fig. 2(b) shows thadlogW is proportional to the logarithm
of reciprocal of the noise intensityg(1/Dp) as the pulse
rate is varied. Our observation indicates that ehare
qualitative differences in the interstate switclsingduced
by Poisson pulses and Gaussian noise.
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Fig. 3. Near a bifurcation point, the motion in tBB phase
space of slow variables can be mapped onto a 1&npiat of the

distribution P(n,,t )= (ut,)* exg-ut,)/n,! » yielding an
estimate for the switching exponent:

Q. = (27"*/9)log(kn7/ §u). (3)

where U is the mean rate of pulse§, is the effective

pulse area in phase space anig a constant. Here, the
n™? factor originates from the square root dependerice
d, on 1. Figure 3 illustrates the different mechanisms for
switching induced by Gaussian and Poisson n@seand

Qe exhibit different dependence on and the noise
intensity, indicating that the noise statisticseaff the
dependence of the switching rates on device pasmet

4. Summary

We study noise induced switchings in nonlinear
micromechanical oscillators periodically driven ant
bistabiliy. Our data demonstrate that the deperslefc
the interstate switching rate on device parameters
qualitatively different for Gaussian noise and Bors
pulses. The findings could create new opportunifags
using driven nonlinear systems as detectors for- non
Gaussian noise.

form ¢Ax) = -x*/3+ nx. For Gaussian noise, switching is induced

when a large outburst of noise overcomes the déiestic force

from the barrierR = 47%43. For Poisson noise, each pulsécknowledgments

translates the system by a distangealdng x. The system can
reach the saddle point if, = do/d, pulses occur during the
relaxation time.

Near bifurcation points, the motion of our resonaian
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be mapped onto that of a Brownian particle in a 1D

potential of the formy(x) = -x*/3+ 7%, wherez is the
system parameter that decreases to zero at thedtifan
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