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Abstract– As the bifurcation frequency for the single 

cantilever is approached the linear response measurement 

of the frequency shift and peak height of the natural 

frequency (NF) resonance, which corresponds to a 

homogeneous solution of a driven nonlinear equation of 

motion, is in good agreement with analytical calculations 

for a single Duffing resonator. Linear response 

measurements also provide information about the 

bifurcation mechanism for an intrinsic localized mode in a 

micro-cantilever array.  We find that the most prominent 

structure in the linear response spectrum for the ILM is, 

again, the NF. When the measured NFs of the two 

geometrically different nonlinear systems are compared 

the results are very similar at large amplitudes, including 

the appearance of nonlinear damping, which grows with 

increased cantilever amplitude. 

 

1. Introduction 

 Micromechanical systems have attracted much interest 

because of their useful applications and/or novel 

dynamical behavior. [1, 2]  A cantilever array provides a 

platform where experiments on collective nonlinear 

behavior can be compared with theory. Intrinsic localized 

modes (ILMs) represent one novel property of the 

dynamical excitations of a nonlinear lattice.[3-5] ILMs 

can be generated and kept at steady state in the cantilever 

array by a continuous vibrational excitation, easily 

produced by a piezo-electric transducer (PZT) attached to 

the cantilever array. An ILM exhibits a bifurcation when 

the PZT frequency is changed beyond a stable region, or 

when a moveable impurity approaches an ILM and 

repulsion or attraction along the lattice take place. [6] A 

linear response measurement is a very powerful tool to 

investigate the mechanism behind such bifurcation 

dynamics.  

 Linear response is measured when a low level 

sinusoidal probe is applied to the ILM and a vibration 

response caused by this perturbation is measured as a 

spectrum by scanning the probe frequency. If some 

resonance peaks in the spectrum shift in frequency near 

the bifurcation point, we expect that those corresponding 

normal modes are connected to the transition. [7, 8] Peaks 

in the spectrum include a natural frequency (NF), linear 

local modes (LLMs) associated with the ILM [9], and 

band modes (BMs) of the lattice.  

 In this paper, we report on the NF measurement of a 

single micro-cantilever in a high amplitude state. Because 

of the driven-damped condition to maintain steady state, 

there should be one pair of peaks associated with the NF, 

symmetrically located about the pump frequency. We 

show that the measured NF results of a single Duffing 

resonator agree with those determined from analytical 

calculation or simulations and that these results also are 

similar at large amplitudes to those observed for the NF of 

an ILM in an array.  

 

2. Experiments 

 Figure 1 is a schematic of the experimental setup for 

the linear response measurement. The micro-cantilever 

sample is set in a vacuum chamber with a piezo-electric 

driver (PZT). Two oscillators are connected to the PZT, 

one is the pump to maintain the nonlinear large amplitude 

state by a large AC signal, and the other is a probe for the 

spectrum measurement with a very small AC amplitude. A 

cantilever is 50 m  long, 15 m width and 300 nm thick.  

The cantilever has a positive nonlinearity, that is, the 

spring constant becomes hard as the amplitude increases. 

 
  To make the linear measurement, first, the pump 

frequency is increased from a frequency below the linear 

resonance frequency to one above so that the oscillator 

reaches a high amplitude state. Then, the probe frequency 

 
Fig. 1  Experimental setup for the linear response 

measurement. A cantilever is set in a vacuum chamber and 

driven vertically by a piezo-transducer (PZT). A laser 

diode (LD) , beam splitter, and position sensitive detector 

(PSD) are employed for the vibration measurement. Large 

amplitude oscillation at 
pumpf and weak amplitude 

oscillation at 
provef  are induced in the cantilever. The 

response is analyzed with a lock-in amplifier. 
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is scanned across the pump frequency to obtain the 

required linear response spectrum. The probe signal is 

analyzed by a lock-in amplifier, which gives sine and 

cosine response when the cosine probe as used as a 

reference signal. Typical real and imaginary parts of the 

response curve are displayed in Fig. 2. The large central 

peak is due to the pump signal. 

 

 
 Figure 3 presents the pump frequency dependence of 

the probe response. Spectra are ordered from bottom to 

top with increasing pump frequency. The arrow on the 

ordinate identifies that particular spectrum when the pump 

frequency coincides with the linear resonance frequency 

of the cantilever. Below this frequency there is only one 

resonance peak, on the right hand side; but as the pump 

frequency increases another resonance appears on the left 

hand side. This peak height increases with the increasing 

pump frequency and at first the NF gap frequency 

increases as well. Then at still larger frequencies it 

decreases.  

 The amplitude dependence of the cantilever vs pump 

frequency, as well as the gap frequency and the peak 

height of the NF are summarized in Fig. 4. The amplitude 

responses for various pump excitation levels are presented 

in Fig. 4(a). Figures 4(b) and (c) show the gap frequency 

and NF peak height dependences, respectively. The gap 

frequency decreases as the pump frequency approaches 

the upper bifurcation point, while the peak height tends to 

diverge. These results are consistent with the simulations 

and analysis results described in the next section.  

 
3. Simulations and analysis 

(a) Single cantilever 

 For the model equation of the single Duffing oscillator, 

we have used 
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where m is the mass,   is the relaxation time, 
2k  and 

4k  

are harmonic and quartic spring constants, 1  and 
2  are 

the driving acceleration amplitude for the pump and probe, 

and pumpf  and probef  are the pump and probe frequency, 

respectively. Values are 10 21.0 10 / (2 ) kgm   , s01.0 , 

mNk /0.12   and 8 3

4 5.0 10 /k N m   throughout the paper. 

 
Fig. 2.  Real (upper) and imaginary (lower) parts of the 

response curve vs probe frequency for the single cantilever 

in a high amplitude state. Sharp, large peak at 95.1 kHz is 

due to the large amplitude oscillation by the pump. 

Somewhat broader peaks symmetrically located about the 

pump frequency are the sideband responses. Pump 

amplitude is 0.41V and probe amplitude is 4.2mV. 

 
Fig. 3 Response spectra vs probe-pump difference frequency 

for various pump frequencies. PZT pump amplitude = 

0.41V; probe amplitude = 4.2mV. Pump frequency ranges 

from 92.30 to 95.78 kHz in 0.04kHz increments. Arrow 

identifies the linear spectrum for f
pump

= 92.812kHz . 

 
Fig. 4. (a) Cantilever amplitude vs pump frequency for 

various excitation levels of the pump: 0.14, 0.27, 0.41, 0.68 

and 1.0V. Solid and dashed curves are for up-scan and 

down-scan respectively. (b) Gap frequency between the NF 

and the pump vs pump frequency for the same pump 

excitation levels. (c) Peak height of the sideband response vs 

pump frequency for the different pump levels. 
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For the probe, we have used typically 2

2 0.01( / )m s  . To 

eliminate the large amplitude vibration oscillating at the 

pump frequency, we made two sets of simulations with 

opposite probe phase keeping the pump amplitude fixed. 

The difference between the two simulations contains only 

the effect of the probe. Then, the resulting displacement is 

multiplied by  cos 2 probef t    or  sin 2 probef t  and 

averaged over a certain time, like a lock-in amplifier, to 

obtain cosine and sine parts of the probe response. By 

changing the probe frequency, real and imaginary parts of 

the response spectra are calculated. 

 
 Figure 5 summarize the pump frequency dynamics of 

the Duffing resonator for three different pump excitation 

levels. Curves in Fig. 5 (a) represent the analytical pump 

response solutions. Markers in Fig. 5(b) identify the 

frequency difference of the NF peak and the pump 

frequency, as a function of the pump frequency. The linear 

resonance frequency is 100 kHz. The gap frequency 

increases with the pump frequency from the linear 

resonance frequency, then decreases beyond the middle of 

the high amplitude frequency region. It approaches zero as 

the pump frequency reaches the upper bifurcation 

frequency. The peak height in Fig. 5(c) increases with 

increasing pump frequency, and diverging near the upper 

bifurcation frequency. 

 The analytical curve was obtained as follows: [7] 
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Similar sideband curves were obtained by Dykman et al. 

[10], who studied the Duffing oscillator as a model of a 

stochastic resonance. Since noise plays an important role 

in the stochastic resonance, they calculated the spectral 

density of vibration analytically (Eq. (19) in Ref. [10]).  

Because of an approximation, their equation is not as 

simple as Eq. (2) and their peak prediction is distorted by 

that assumption. Also the gap frequency is related to the 

stability of the stationary state. For the Duffing equation, 

stability can be checked by evaluating the perturbed 

equations in the stationary state. [11-13] 

 (b) Cantilever array 
 The equations of motion for the cantilever array 

simulations have the form 
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where 
im is the mass,  is the relaxation time, 

2Oik and 

4Ok  are harmonic and quartic onsite spring constant, 

( )

2

j

Ik is the harmonic spring constant for the intersite 

connection up to 6-th neighbor, and 
4Ik  is the quartic 

spring constant for the intersite connection. The right hand 

side is the driving term. Here to match experiment 
21000m/spump  is the pump acceleration and   is the 

pump frequency.  The second term is for the probe driver 

at frequency   and acceleration amplitude 
20.01m/sprobe  . In the cantilever array, it is observed 

that the driven ILM displays an amplitude dependence vs 

pump frequency similar to the Duffing, and bifurcation at 

a high frequency brings its sudden collapse. [7, 14] We 

have observed very similar pump frequency dependences 

of the NF shift and peak height as shown in Figs. 4(b) and 

(c). Frequency softening and amplitude diverging for 

these cases at the high frequency transition are sign of the 

approaching saddle-node bifurcation for the driven-

damped Duffing-like response.  

 To compare more precisely the single cantilever and the 

ILM cases in experiments and in analytical/simulation, we 

evaluate 
4

gapf , because it is known as a predictor of the 

saddle-node bifurcation for the undamped condition. [12] 

Four panels as a function of the driver frequency are to be 

compared in Fig. 6. In this representation, the saddle node 

bifurcation takes place where the gapf curve approaches 

zero at the high frequency location. In all four cases the 

 
Fig. 5.  (a) Nonlinear amplitude response of a single 
Duffing resonator vs pump frequency. Three pump 
amplitudes are shown: 1000  , 2000, and 3000 

2( / )m s . (b) Analytically determined sideband gap 
frequency (solid curves) and simulated peak heights 
(markers) vs pump frequency. Notation: 

1000  (circles), 2000 (crosses), and 3000 
2( / )m s (triangles). (c) Analytical sideband peak height 

(solid curve) and simulated gap frequency (markers) vs 
pump frequency.  
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curves look almost linear near the bifurcation point; 

however, the experimental curves in (a) and (c) both bend 

up as the curves move away from that point, while 

analytical or simulated cases in (b) and (d) bend down.  

 
We might have expected a difference between the 

single cantilever and ILM cases due to geometry but 

instead we have found differences between the 

experimental and analytical/simulated results for both 

cases. These findings indicate that there is a physical 

difference between the real cantilever systems and our 

model equations of motions. A likely candidate is 

nonlinear damping, with larger damping for the larger 

amplitude state. In both of the models used, we adopted 

linear damping with its constant obtained experimentally, 

but for the small amplitude state. 

 

5. Summary 

 For the positive nonlinear case studied here, the saddle 

node bifurcation takes place at the high frequency side of 

the amplitude spectrum where it drops suddenly as 

demonstrated in Figs. 4(a) and 5(a). We have found that 

the measured frequency shift and peak height of the NF 

resonance for the single cantilever is in good agreement 

with analytical calculations, as the bifurcation frequency 

is approached, i.e., the gap frequency decreases and the 

peak height diverges. We conclude that the analytical 

linear response equation is valid. The high frequency 

response of the ILM is comparable to that found for the 

single cantilever, near the bifurcation point. From both 

single cantilever and ILM studies, it appears that 

nonlinear damping in the silicon nitride cantilevers may 

modify how the NF gap frequency depends on the pump 

frequency. 
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Fig. 6. Predictor of the saddle-node bifurcation, 

4

gapf , vs 

pump frequency for four cases. (a) Experimentally 

measured single cantilever, (b) Analytically calculated 

single cantilever, (c) Experimentally measured ILM, and (d) 

Simulated ILM. (Data from Ref.[7].) The approach to zero 

on the high frequency side is the signature of the saddle-

node bifurcation. Dashed lines are guide to eye.  
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