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Abstract—This paper presents the mixed time-
frequency steady-state analysis method for efficient
simulation of circuits whose excitation frequencies are
widely separated. These circuits can be written by mul-
titime partial differential equations. In this paper, an axis
of the slow time-scale is formulated in the time domain
and another axis of the fast time-scale is formulated in the
frequency domain.

We show that computational cost, however, is not de-
pendent on the interval of frequencies, whereas for the har-
monic balance or transient analysis, it increases exponen-
tially as the interval of frequencies increases.

1. Introduction

For some modulation circuits used in digital commu-
nications, time-scales of an information signal and a car-
rier are widely separated. If such circuits are simulated
by using the transient analysis of the time domain sim-
ulator, such as SPICE, computational cost increases, be-
cause it is necessary to use small time steps of numerical
integration for high frequency and to calculate over long
time for low frequency. Harmonic balance[1][2] is avail-
able as a nonlinear circuit analysis method in the frequency
domain. In the case of harmonic balance for multitone,
multidimensional Fourier transform[3] or almost-periodic
Fourier transform[4] is used. However, if frequencies are
separated, the computational cost will increase. Further-
more, the size of a matrix that should be solved for many
harmonics becomes large.

In this paper, a mixed time-frequency steady-state analy-
sis method for a multitime partial differential equation[5] to
simulate these circuits efficiently is presented. This method
is based on the envelope method[6][7]. It formulates one
axis of the fast time-scale in the frequency domain and for-
mulates another axis of the slow time-scale in the time do-
main. The time-axis is discretized in time and differential
terms are integrated numerically. At each discretized time,
the nonlinear elements expressed with Fourier series are
linearized by iterations of Newton’s method. Therefore,
computational cost is not dependent on the interval of fre-
quencies. So, it is effective for circuits whose frequencies
of an informational signal and a carrier are widely sepa-
rated.

The algorithm of the mixed time-frequency steady-state

analysis method is described in Section 2. In Section 3,
formulation for some circuit elements is presented. In Sec-
tion 4, the simulation costs of the mixed time-frequency
method, harmonic balance and transient analysis are com-
pared by referring to an example circuit.

2. Mixed Time-Frequency Steady-State Analysis
Method

2.1. Multitime Partial Differential Equation

The following differential algebraic equation form for
describing a circuit is used.

∂q(v(t))
∂t

+ i(v(t)) + u(t) = 0. (1)

We consider the circuit driven by two tones where frequen-
cies are widely separated as shown in Fig.1. It can be
shown that if v(ti, tc) and u(ti, tc) denote the bivariate forms
of the circuit unknowns and excitations[5], then the fol-
lowing multitime partial differential equation is the correct
generalization of (1) for the bivariate case:

∂q(v(ti, tc))
∂ti

+
∂q(v(ti, tc))
∂tc

+ i(v(ti, tc)) + u(ti, tc) = 0,

where ti denotes slow time-scale for low frequency and tc
denotes fast time-scale for high frequency.
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Figure 1: Information signal and carrier

2.2. Algorithm of Mixed Time-Frequency Method

In this method, ti-axis of (1) is handled in the time do-
main and tc-axis of (1) is transformed into the frequency
domain as shown in Fig.2. Then, ti-axis is discretized in
time and differential terms are integrated numerically. For
tc-axis, it is expanded into Fourier series as follows:

v(ti, tc) =
K∑

k=−K

Vk(ti, ωc)e jkωctc , (2)
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where ωc is an angular frequency of a carrier. The non-
linear elements expressed with Fourier series are linearized
by Newton’s iterations at each discretized time. When the
envelopes of the spectra, which change with time for every
harmonics, reached a steady state, these envelopes for one
period of low frequency are transformed into the frequency
domain. Finally, we can get steady-state responses sum-
ming up all spectra shifted to each fundamental frequency
as shown in Fig.3.
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Figure 2: Two axes of time and frequency
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Figure 3: Summation of shifted spectra

A flowchart of the mixed time-frequency steady-state
analysis method is shown in Fig.4.
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Figure 4: A flowchart of the mixed time-frequency steady-
state analysis method

3. Formulation for Each Element

3.1. Dynamic Element (Capacitor)

The relation of the current i(t) and the voltage v(t) of the
linear capacitor C is given by

i(t) = C
dv(t)

dt
. (3)

It is assumed that v(t) can denote bivariate form v(ti, tc).
Substituting (2) into (3), we have

i(ti, tc) =
K∑

k=−K

Ik(ti, ωc)e jkωctc ,

where

Ik(ti, ωc) = jkωcCVk(ti, ωc) +C
dVk(ti, ωc)

dti
. (4)

Discretizing in time of (4), the trapezoid formula is applied
to the differential term. We obtain

Ik(ti,n+1) = GCVk(ti,n+1) + IC,n,

where
{

GC = jkωcC + 2C
h

IC,n = − 2C
h Vk(ti,n) −C dVk(ti,n)

dti

, (5)

and n denotes a subscript of discrete time and h = tn+1 − tn
is a time step of numerical integration. Then, an equivalent
circuit consists of a conductance Gc and current source Ic

in parallel.

3.2. Nonlinear Conductance (Diode)

We assume the nonlinear characteristic of diode is given
by iD = i(v). When harmonic Newton is applied to the
diode, we can consider that the equivalent circuit at m-th
Newton iteration consists of current vector I(m)

D and con-
ductance matrix G(m)

D in parallel. Vector I(m)
D and matrix

G(m)
D are shown as follows:

I(m)
D = I(m) − dI(m)

dV (m) V (m)

G(m)
D =

dI(m)

dV (m) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(m)(0) G(m)(−1) · · · G(m)(−2K)
G(m)(1) G(m)(0) · · · G(m)(−2K + 1)
...

...
. . .

...
G(m)(2K) G(m)(2K − 1) · · · G(m)(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where K is the number of harmonics. Each element of G(m)
D

can be expressed using discrete Fourier transform as fol-
lows.

G(m)(k − l) =
∂I(m)(k)
∂V (m)(l)

=
1
S

S∑

s=0

g(m)(s)e− j 2π(k−l)s
S ,
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where S is the number of time points, k, l denote harmonics
and

g(m)(s) =
∂i(m)(v(s))
∂v(m)(s)

.

In the case of multicarrier whose angular frequencies
are ωc1 and ωc2 , conductance matrix G(m)

D′ is calculated by
follows[8].

G(m)
D′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(m)(Ω−K −Ω−K) · · · G(m)(Ω−K −ΩK)
G(m)(Ω−K+1 −Ω−K) · · · G(m)(Ω−K+1 −ΩK)

...
. . .

...

G(m)(ΩK −Ω−K) · · · G(m)(ΩK −ΩK)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

G(m)(Ωk −Ωl) =
∂I(m)(Ωk)
∂V (m)(Ωl)

=
1
S

S∑

s=0

g(m)(s)e− j(Ωk−Ωl)ts ,

ts =
sT
S
, T = GCD

(
2π
ωc1

,
2π
ωc2

)
,

where GCD(·) denotes greatest common divisor and
Ωk,Ωl = mk1ωc1 + mk2ωc2 for mk1 ,mk2 are both integers.

3.3. Information Signal

When we consider an information signal vin(ti) =
A sin(ωiti), A sin(ωiti,n) should be added to the equivalent
circuit at each discrete time tn, as a DC source.

4. Example Circuit

An example circuit and its equivalent circuit at n-th dis-
crete time and m-th Newton iteration is shown in Fig.5. vin

of excitation is used as the following signal:

vin(ti, tc) = A sin(ω1ti) + B sin(ω2tc).

The solved equation is shown by (6). For confined space,
the number of harmonics used is K = 1 here.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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D (ω2) 1

R +GC(ω2) +G(m)
D (0) 0 0 0
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V (m+1)
1,n+1 (−ω2)

V (m+1)
1,n+1 (0)

V (m+1)
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

IC,n(−ω2) − I(m)
D (−ω2)

IC,n(0) − I(m)
D (0)

IC,n(ω2) − I(m)
D (ω2)

jB/2

A sin(ω1ti,n+1)

− jB/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)
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Figure 5: An example circuit and its equivalent circuit

5. Result
Steady-state response of the example circuit in Fig.5 is

calculated by the mixed time-frequency steady-state anal-
ysis method, harmonic balance and transient analysis. The
numbers of harmonics around high frequency used are
K = 5, 10, and 64 discretized time points are used in one
period of low frequency for the mixed method. The num-
ber of harmonics used is K1 = K2 = 5 in harmonic bal-
ance with multitone. The number of discretized time points
used is 50 in one period of high frequency in the tran-
sient analysis. Computational time of these three meth-
ods is shown in Fig.6. The horizontal axis is a ratio of
ω1 and ω2 and the vertical axis is a computational time. In
the harmonic balance and transient analysis, the computa-
tional time increases exponentially. However, in the mixed
time-frequency steady-state analysis method, it is not de-
pendent on the ratio of two excitation frequencies. If fre-
quency scales are separated more than two or three figures,
the mixed method is found to be more effective than other
methods.
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6. Conclusions
The mixed time-frequency steady-state analysis method

is described. An axis of the slow time-scale is formulated
in the time domain and another axis of the fast time-scales
is formulated in the frequency domain. It was shown that
computational cost is not dependent on the interval of fre-
quencies, whereas for other methods it increases exponen-
tially as the interval of frequencies increases. Therefore,
the mixed time-frequency method is calculated efficiently,
if the time-scales are widely separated.
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