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Abstract—

Implement of optimization methods by the circuit is one
of the practical ways to get the optimal solution within lim-
ited time. In previous study, we have proposed an optimizer
based on chaotic dynamical system that seems to be suited
for circuit implementation. In this paper, we consider the
system parameter of the previous proposed method. A pa-
rameter set that obtains statistically better solution was dis-
covered. Using the parameter, the chaotic system exhibits
characteristic time-dependent behavior.

1. Introduction

Many problems in engineering field can be considered as
optimization problems, such as design of artificial objects
and arrangement of equipment. For the optimization prob-
lems, it is required to quickly get an optimal solution that is
characterized by the maximum or minimum fitness value.
Implementation of optimization methods by the circuit is
one of the solutions of it.

Optimization methods that search the optima using some
searching points based on dynamical systems would be fea-
sible for the circuit implementation. This is because the up-
dating rules of searching points can be written by different
equations. However, most of them require stochastic terms.
Implementation of the stochastic terms would make the cir-
cuit complex. In previous study, we have proposed an opti-
mization method based on piecewise rotational chaotic sys-
tem (OPRC) [1]. OPRC is deterministic system and the
performance is better than particle swarm optimization [2].
It is expected that the circuit of OPRC is simpler than other
dynamical-based optimization methods.

In this paper, we consider system parameters of OPRC
that can obtain better solutions for general problems. Previ-
ously, parameters of OPRC are experimentally selected for
each benchmark function. However, it is difficult to change
the parameters in the circuit, comparing with numerical ex-
periments. Hence, it is required to consider the adequate
parameters that obtain better solutions for many functions.
Our investigation discovered the adequate parameters. The
correlation between the performance of OPRC and time-
dependent behavior of the chaotic system was also ob-
served.

In this paper, Sec. 2 describes the chaotic dynamical sys-
tem and its time-dependent behavior. OPRC is mentioned
in Sec. 3. Section 4 shows comparison results between
some parameter sets of OPRC for benchmark functions.

2. A piecewise rotational chaotic system
2.1. Dynamics
Dynamics is

2sgn(y())Th — y(1)
0 (1a)

ye+1) | for(v(z), y(¢)) € 11,
vie+1) | r| cos 6 sind |[ v
—sinf cosé v(t) (1b)

otherwise,

I = {0, y®) | @] > Th, sgn(v(0)y(0)) = -1},

B 1 fora>0,
sgn(a) = -1 fora<O.

where R > 1,0 < 60 < ’5’ and Th are system parameters, R
and 6 refers to the expanding and rotational motion, respec-
tively. Th denotes y(¢)-axis threshold of II. The trajectory
rotates divergently around the origin by Eq. (1b), and when
the trajectory gets into I, it is folded forward to the origin
by Eq.(1a). The trajectory repeats this manner and exhibits
chaotic attractor as show in Fig. 1. Figure 2 shows time-
series of the y(7).
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(c) R = 1.37,6 = 50[deg]

(d) R =1.69,0 = 31[deg]

Figure 1: Typical chaotic attractors of PRC

-732 -



t

t
> -10 >

) 50 100 0 50 100

(a) R = 1.07,6 = 20[deg] (b) R = 1.56,60 = 41[deg]

N2 2% (1)

t t
-4 > -20 >

0 50 100 0 50 100

(¢c) R =1.37,6 = 50[deg] (d) R =1.69,0 = 31[deg]

Figure 2: Typical time-series of y(f)

2.2. Time-series analysis

Let us consider the time-dependent behavior of PRC’s
trajectory. We calculated autocorrelation function (ACF) of
y(#) that is given by Eq. (1). We gave y;(0) and v;(0), where
i € {1...100}, by uniformed distribution with [—-1, 1] and
Th = 1, then update y;(f) and v;(¢¥) until # = 11000. Fo-
cusing on the time-series of y;(¢), the ACF ¢;(m) and the
normalized ACF ®;(m) is calculated by

11000-m—1
sm) = D yiwyin+m), @
n=10000
¢i(m)
O, =—. 3
m =35 3)

The ACF averaged by 100 sets of different initial condi-
tions, ®(m), is given by

. 1 100
B(m) = 755 >, Dilm). @)
i=1

Figure 3 shows typical ®(m). y(r) given by R = 1.07,60 =
20[deg] exhibits slowly damping and low-frequency ®(m)
as shown in Fig. 3a. The ACF shows that y(f) keeps strong
time-correlation at least m = 30. In Fig. 3b, 5(m) seems
converging faster than other typical parameters. It indicates
that the time-series given by R = 1.56,0 = 41[deg] has
weak time-correlation. y(f) given by R = 1.37,0 = 50[deg]
obtains damped oscillated ®(rm), and it converges on almost
0 at m = 30 as shown in Fig. 3c. Damped oscillated ®(m)
is also observed with y(¢) given by R = 1.69, 0 = 31[deg] as
shown in Fig. 3d. Comparing Fig. 3c, the ACF has more
high-frequency and converges faster. The y(f) has time-
correlation for only a short time.
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Figure 3: Autocorrelation function of y(#)

3. An optimization method based on PRC

This section describes OPRC [1]. OPRC searches the
optimal solution by n number of searching points

xi(1) = {xi1, Xias « « o, Xia}
and independent variables
vi(t) = {vir, vias . . -, Vid}

where i € {1,2,...n} is an index number, d is a number
of dimension of a given problem f, and t € {0,1,2,...}
is time step. v;(0) and x;(0) are set to O and given by ran-
domly, respectability. The fitness value f(x;(¢)) is calcu-
lated for each time step. x;(¢) is stored as pb; when f(x;(¢))
is the maximum or minimum value in own fitness history,
{f(x:(0)), f(x;(1)), f(x;(2)),...}. pb;is stored as gb when
f(pb;) is the best in {f(pb1), f(pb2). ..., f(pb,)}. To up-
date x;(#) with considering the pb; and gb, let shifted posi-
tion of x;(7) be y;(7):

1
yit) = xi(1) = 5(pbi + gb). ®)

When y;(¢#) = 0, x;(¢) is the middle point between pb; and
gb. y;(t) and v;(¢) are updated by PRC dynamics as follows:

2sgn(y; (DT hij — yij(1)
0 (62)
[ yt+ 1) | _ for(vij(1), yij(1) € I,
vij(t+ 1) cos sinf || yi;(®)
—sinf cosf vii(t) (6b)
otherwise,
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IT= {(Vij(t)’yij(t))“)’ij(t)l > Thj,sgn(v;j(Dy;;(t)) = —1}, Table 3: Benchmark results

where j € {1,2,....d} is an index number, and T#;; = Gray rectangles denote the best averaged value for each function.

1|pb;; — gb;|. The next searching points are given by
21P0ij J

f set 1 set 2 set 3 set 4
1 ave —140x10° —140x10° —140%10° —140x 10°
xi(t+ 1) = yi(t+ 1)+ —(pbi + gb). fi gd 225% 10 169x 107 325x 1071 8.59 x 1072

ave 2.31x10° 3.04x10° 1.84x10° 4.16 x 10°
The searching points are updated until the termination cri- £ std  1.85x10° 242x10° 1.75x10°  3.01 x 10°

terion, fmax, has been met. At the criterion, gb is a searched ave 3.23x10° 495x107 7.83x107 9.78x 10}

solution. 5ogd 530x10° 982x107 2.03x10° 234 x 10°
ave  255x 107 356x 107 1.79x 10°  4.67x 107

. ) foogd 125100 259% 104 132x10° 639 x 10°

4. Numerical experiment ave Z1.003 —1.00x 10° —1.00x10° —1.00 x 10°
55 gd 334%10° 608x10° 859x 10 3.19x 10-!

2 2 2

Table 1: CEC 2013 benchmark functions [3]. fo ol gas iﬁ?ﬁ _?ﬁ " }81 _?'gz . }81 _gfg " }81

ave 7422 —761x 10> —7.58 x 10° —7.39 x 10

Type S Optimal fitness  Search range Fogd 348x100 215x100  2.86x100 328 x 10"
Unimodal A _1400 [—100, 100]? foAve -6.802 —-6.80 x 10> —6.80 x 10> —6.80 x 10?
Unimodal 2 -1300 [—100, 100]D std 9.33x1072 7.97x1072 935x102 1.15x 107!
Unimodal f? -1200 [_1007 100]D % ave -5.942 —591x 10> —-5.94x 10> -5.91x 10?
Unimodal ~ f4 -1100 [-100, 100]? std 1.68 1.5 153 140
T R S R Bl it B
Multimodal  fs -900 [~100,100]” ave 73802 395x10° —388x10° 388 107
Multimodal ~ f -800 [-100, 100]? fir yq 927 523 777 517
Multimodal  f -700 [-100, 100]” ave 2742 2.68x 107 278 x 102 —271 x 102
Multimodal  fy -600 [-100, 100]2 oo gd 128% 10 807 1.05x10' 1.27x10'
Multimodal  fio -500 [-100, 100] ave —1.532 —1.66x 10> —1.63x 102 —1.62% 10
Multimodal  fi; -400 [-100, 100]” 5 gd 194x100 1.03x100  1.82x100  145x 10!
Multimodal ~ fi, -300 [—100, 100]° ave  553x10° 751x10° 3.15x 10> 7.05x 10
Multimodal  fi3 -200 [-100, 1001° fie qd 211x10° 308x10° 189x10°  3.92x 102
Multimodal ~ fi4 -100 [-100, 1001° f ave 9.83x10> 184x10° 1.04x10° 1.62x10°
Multimodal  fis 100 [-100, 100]? Postd  3.05x10> 250x 102 3.11x 10> 4.82x 10
Multimodal f17 300 [-100, 100]D o ave 329%x 102 3.27x 102  3.19 x 102 3.31 x 10?
Multimodal ~ fis 400 [~100, 100]” std 8.68 545 4.20 873
Multimodal  fio 500 (=100, 100]° fe e 432 % 10l 447 x 10> 430 % 101 451 x 10l
Multimodal  fu 600 [~100,100]° e 010 S0 SO S0
Composition  f5 700 [-100, 100]° fo ; Co4a Ca g SR .
Comgosiﬁon 22 200 100, 1001° std 5.63x 10 2 435x 10 2 3.63x 10 ! 6.60 x 10 2
i ave  604x10° 6.04x10° 6.04x 10> 6.04x10
Composition  fo3 900 [-100, 100]” o Gd 529% 107 343x 107 383107 3.64x 10°!
Composition 4 1000 [-100, 100]° ave  1.09x10° 1.09x10° 1.09x10° 1.10x10°
Composition s 1100 [-100, IOO]Z PUogd 496x100 396x100 341x100  1.37x 10!
Composition  fr 1200 [-100, 100] ave 1.65x10° 175x10° 134x10° 1.79x10°
Composition  f»; 1300 [-100, 1001° 2G4 283%100 375% 100 217x10°  5.17x 10?
Composition ~ f>g 1400 [-100, 100]° ave 2.14x10° 2.84x10° 2.08x10° 2.66 x 103

fas std  3.03x 102 2.17x10> 3.70x 10>  4.33 x 10?

ave  121x10° 123x10° 1.22x10° 1.23x10°

Pega 1a7x 10! 2.29 475 3.99

Table 2: Parameters ave 131x10° 133x10°0 131x10° 133 x 10°

s g4 132x10 1.50 459 227

R Oldeg] ave 144x10° 144x10° 144x10° 1.45x10°

Set 1 0 ” fo qa g2ax 100 668x10' _807x10! _705x10!
ser 136 o o we 19107 176107 176107 183x10
sd  112x10° 484x10' 3.65x 100 643 x 10!

Set3 137 50 ave  234x10° 185x10° 1.96x10° 182X 10°
Set 4 1.69 31 P qd 236x100 270x 107 240% 10> 1.98 x 107
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Table 4: Rank;; based on averaged values in Table 3.
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This section compares the performance of OPRC for
benchmark functions. We selected 27 functions from CEC
2013 benchmark test suite [3] as shown in Table 1. We se-
lected 4 typical parameters as shown in Table 2. The behav-
ior of PRC using these parameters is described in previous
sections. The conditions of the comparison are as follows:
number of searching points is 20, size of dimension is 10,
tmax = 1000. For each trial, the initial values of search-
ing points are given by the uniformed distribution with the
range in Table 1. The fitness of gb at . is stored for each
trial, and the final fitness values are averaged by 50 trials.
Table 3 shows the averaged fitness values and the standard
deviations. OPRC with parameter set 3 obtained the best-
averaged values for 18 functions, and it seems superior to
others. We tested the difference between the parameter sets
with pairwise-test [4]. The rank of i-th function and j-th
parameter set, Rank;;, is shown in Table 4. Two parameter
sets are significantly different when following an inequality
is satisfied:

2b(A - B)

Rank,, — Rank,,| > #;_o, _—
|Ran ank,,| > t1-0.01/2 b-DG-D)

=183, (7)

where Rank, and Rank, is sum of ranks calculated by
Rank; = Zf-’zl Rank;;, n and m are indexes of a compared
parameter set, ¢1_¢ 01,2 is quantile of the F-distribution with
ky =k—1and k, = (b — 1)(k — 1) degrees of freedom at
0.01 significant level, b and k is a number of functions and

. 2
parameter sets, respectively, A = Y7, Z'j‘.zl (Rank,-_,-) , and

B=;3, (Rank j)z. The difference between Ranks; and
other sum of ranks is over 18.3, therefore, it is considered
that the parameter set 3 outperforms than others.

As shown in Sec. 2, the various time-dependent behav-
ior of PRC is observed among the 4 parameters sets. And
performance of OPRC is significantly different depending
on the parameters. This comparison indicates that there is
correlation between time-dependent behavior of PRC and
performance of OPRC.

5. Conclusion

Performances of OPRC between typical parameter sets
are compared statistically. A parameter set that obtains
better result than others are discovered. Moreover, in this
comparison performance of OPRC seems to be correlated
with time-depend behavior of PRC. The analysis of the cor-
relation and the circuit implementation of PRC is future
works. We are working on the implementation by field pro-
grammable analog arrays.

References

[1] Y. Yamanaka and T. Tsubone, “A Basic Study on
Symmetrical Chaotic Dynamics for Population-based
Optimization,” Proceedings of the 2014 International

Symposium on Nonlinear Theory and its Applications,
no. 5, pp. 152-155, September 2014.

[2] J. Kennedy and R. Eberhart, “Particle swarm optimiza-
tion,” Proceedings of IEEE international conference on
neural networks, vol. 4, pp. 1942-1948, 1995.

[3] J. J. Liang, B. Y. Qu, P. N. Suganthan, and A. G.
Hernandez-Diaz, “Problem definitions and evaluation
criteria for the CEC 2013 special session on real-
parameter optimization,” Computational Intelligence
Laboratory, Zhengzhou University, Zhengzhou, China
and Nanyang Technological University, Singapore,
Technical Report, vol. 201212, 2013.

[4] W. J. Conover, Practical Nonparametric Statistics,
vol. 40. Wiley, 2nd ed., December 1980.

- 735 -



	Navigation Page
	Session at a glance

