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Abstract—
Implement of optimization methods by the circuit is one

of the practical ways to get the optimal solution within lim-
ited time. In previous study, we have proposed an optimizer
based on chaotic dynamical system that seems to be suited
for circuit implementation. In this paper, we consider the
system parameter of the previous proposed method. A pa-
rameter set that obtains statistically better solution was dis-
covered. Using the parameter, the chaotic system exhibits
characteristic time-dependent behavior.

1. Introduction

Many problems in engineering field can be considered as
optimization problems, such as design of artificial objects
and arrangement of equipment. For the optimization prob-
lems, it is required to quickly get an optimal solution that is
characterized by the maximum or minimum fitness value.
Implementation of optimization methods by the circuit is
one of the solutions of it.

Optimization methods that search the optima using some
searching points based on dynamical systems would be fea-
sible for the circuit implementation. This is because the up-
dating rules of searching points can be written by different
equations. However, most of them require stochastic terms.
Implementation of the stochastic terms would make the cir-
cuit complex. In previous study, we have proposed an opti-
mization method based on piecewise rotational chaotic sys-
tem (OPRC) [1]. OPRC is deterministic system and the
performance is better than particle swarm optimization [2].
It is expected that the circuit of OPRC is simpler than other
dynamical-based optimization methods.

In this paper, we consider system parameters of OPRC
that can obtain better solutions for general problems. Previ-
ously, parameters of OPRC are experimentally selected for
each benchmark function. However, it is difficult to change
the parameters in the circuit, comparing with numerical ex-
periments. Hence, it is required to consider the adequate
parameters that obtain better solutions for many functions.
Our investigation discovered the adequate parameters. The
correlation between the performance of OPRC and time-
dependent behavior of the chaotic system was also ob-
served.

In this paper, Sec. 2 describes the chaotic dynamical sys-
tem and its time-dependent behavior. OPRC is mentioned
in Sec. 3. Section 4 shows comparison results between
some parameter sets of OPRC for benchmark functions.

2. A piecewise rotational chaotic system

2.1. Dynamics

Dynamics is

[
y(t + 1)
v(t + 1)

]
=



[
2sgn(y(t))Th − y(t)

0

]
for(v(t), y(t)) ∈ Π,

(1a)

R
[

cos θ sin θ
− sin θ cos θ

] [
y(t)
v(t)

]
otherwise,

(1b)

Π =
{
(v(t), y(t))

∣∣∣ |y(t)| > Th, sgn(v(t)y(t)) = −1
}
,

sgn(a) =
{

1 for a > 0,
−1 for a ≤ 0.

where R > 1, 0 < θ < π2 and Th are system parameters, R
and θ refers to the expanding and rotational motion, respec-
tively. Th denotes y(t)-axis threshold of Π. The trajectory
rotates divergently around the origin by Eq. (1b), and when
the trajectory gets into Π, it is folded forward to the origin
by Eq.(1a). The trajectory repeats this manner and exhibits
chaotic attractor as show in Fig. 1. Figure 2 shows time-
series of the y(t).
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Figure 1: Typical chaotic attractors of PRC
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Figure 2: Typical time-series of y(t)

2.2. Time-series analysis

Let us consider the time-dependent behavior of PRC’s
trajectory. We calculated autocorrelation function (ACF) of
y(t) that is given by Eq. (1). We gave yi(0) and vi(0), where
i ∈ {1 . . . 100}, by uniformed distribution with [−1, 1] and
Th = 1, then update yi(t) and vi(t) until t = 11000. Fo-
cusing on the time-series of yi(t), the ACF ϕi(m) and the
normalized ACF Φi(m) is calculated by

ϕi(m) =
11000−m−1∑

n=10000

yi(n)yi(n + m), (2)

Φi(m) =
ϕi(m)
ϕi(0)

. (3)

The ACF averaged by 100 sets of different initial condi-
tions, Φ(m), is given by

Φ(m) =
1

100

100∑
i=1

Φi(m). (4)

Figure 3 shows typical Φ(m). y(t) given by R = 1.07, θ =
20[deg] exhibits slowly damping and low-frequency Φ(m)
as shown in Fig. 3a. The ACF shows that y(t) keeps strong
time-correlation at least m = 30. In Fig. 3b, Φ(m) seems
converging faster than other typical parameters. It indicates
that the time-series given by R = 1.56, θ = 41[deg] has
weak time-correlation. y(t) given by R = 1.37, θ = 50[deg]
obtains damped oscillatedΦ(m), and it converges on almost
0 at m = 30 as shown in Fig. 3c. Damped oscillated Φ(m)
is also observed with y(t) given by R = 1.69, θ = 31[deg] as
shown in Fig. 3d. Comparing Fig. 3c, the ACF has more
high-frequency and converges faster. The y(t) has time-
correlation for only a short time.
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Figure 3: Autocorrelation function of y(t)

3. An optimization method based on PRC

This section describes OPRC [1]. OPRC searches the
optimal solution by n number of searching points

xi(t) = {xi1, xi2, . . . , xid}

and independent variables

vi(t) = {vi1, vi2, . . . , vid}

where i ∈ {1, 2, . . . n} is an index number, d is a number
of dimension of a given problem f , and t ∈ {0, 1, 2, . . . }
is time step. vi(0) and xi(0) are set to 0 and given by ran-
domly, respectability. The fitness value f (xi(t)) is calcu-
lated for each time step. xi(t) is stored as pbi when f (xi(t))
is the maximum or minimum value in own fitness history,
{ f (xi(0)), f (xi(1)), f (xi(2)), . . . }. pbi is stored as gb when
f (pbi) is the best in { f (pb1), f (pb2), . . . , f (pbn)}. To up-
date xi(t) with considering the pbi and gb, let shifted posi-
tion of xi(t) be yi(t):

yi(t) = xi(t) −
1
2

(pbi + gb). (5)

When yi(t) = 0, xi(t) is the middle point between pbi and
gb. yi(t) and vi(t) are updated by PRC dynamics as follows:

[
yi j(t + 1)
vi j(t + 1)

]
=



[
2sgn(yi j(t))Thi j − yi j(t)

0

]
for(vi j(t), yi j(t)) ∈ Π,

(6a)

R
[

cos θ sin θ
− sin θ cos θ

] [
yi j(t)
vi j(t)

]
otherwise,

(6b)
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Π =
{
(vi j(t), yi j(t))

∣∣∣|yi j(t)| > Thi j, sgn(vi j(t)yi j(t)) = −1
}
,

where j ∈ {1, 2, . . . , d} is an index number, and Thi j =
1
2 |pbi j − gb j|. The next searching points are given by

xi(t + 1) = yi(t + 1) +
1
2

(pbi + gb).

The searching points are updated until the termination cri-
terion, tmax, has been met. At the criterion, gb is a searched
solution.

4. Numerical experiment

Table 1: CEC 2013 benchmark functions [3].

Type f Optimal fitness Search range
Unimodal f1 -1400 [−100, 100]D

Unimodal f2 -1300 [−100, 100]D

Unimodal f3 -1200 [−100, 100]D

Unimodal f4 -1100 [−100, 100]D

Unimodal f5 -1000 [−100, 100]D

Multimodal f6 -900 [−100, 100]D

Multimodal f7 -800 [−100, 100]D

Multimodal f8 -700 [−100, 100]D

Multimodal f9 -600 [−100, 100]D

Multimodal f10 -500 [−100, 100]D

Multimodal f11 -400 [−100, 100]D

Multimodal f12 -300 [−100, 100]D

Multimodal f13 -200 [−100, 100]D

Multimodal f14 -100 [−100, 100]D

Multimodal f15 100 [−100, 100]D

Multimodal f17 300 [−100, 100]D

Multimodal f18 400 [−100, 100]D

Multimodal f19 500 [−100, 100]D

Multimodal f20 600 [−100, 100]D

Composition f21 700 [−100, 100]D

Composition f22 800 [−100, 100]D

Composition f23 900 [−100, 100]D

Composition f24 1000 [−100, 100]D

Composition f25 1100 [−100, 100]D

Composition f26 1200 [−100, 100]D

Composition f27 1300 [−100, 100]D

Composition f28 1400 [−100, 100]D

Table 2: Parameters

R θ[deg]

Set 1 1.07 20
Set 2 1.56 41
Set 3 1.37 50
Set 4 1.69 31

Table 3: Benchmark results

Gray rectangles denote the best averaged value for each function.

f set 1 set 2 set 3 set 4

f1
ave −1.40 × 103 −1.40 × 103 −1.40 × 103 −1.40 × 103

std 2.25 × 10−13 1.69 × 10−7 3.25 × 10−14 8.59 × 10−2

f2
ave 2.31 × 106 3.04 × 106 1.84 × 105 4.16 × 106

std 1.85 × 106 2.42 × 106 1.75 × 105 3.01 × 106

f3
ave 3.23 × 108 4.95 × 107 7.83 × 107 9.78 × 108

std 5.30 × 108 9.82 × 107 2.03 × 108 2.34 × 109

f4
ave 2.55 × 104 3.56 × 104 1.79 × 104 4.67 × 104

std 1.25 × 104 2.59 × 104 1.32 × 104 6.39 × 104

f5
ave −1.003 −1.00 × 103 −1.00 × 103 −1.00 × 103

std 3.34 × 10−8 6.08 × 10−5 8.59 × 10−14 3.19 × 10−1

f6
ave −8.832 −8.92 × 102 −8.97 × 102 −8.85 × 102

std 2.35 × 101 1.01 × 101 1.03 × 101 2.18 × 101

f7
ave −7.422 −7.61 × 102 −7.58 × 102 −7.39 × 102

std 3.48 × 101 2.15 × 101 2.86 × 101 3.28 × 101

f8
ave −6.802 −6.80 × 102 −6.80 × 102 −6.80 × 102

std 9.33 × 10−2 7.97 × 10−2 9.35 × 10−2 1.15 × 10−1

f9
ave −5.942 −5.91 × 102 −5.94 × 102 −5.91 × 102

std 1.68 1.58 1.53 1.40

f10
ave −4.952 −4.99 × 102 −5.00 × 102 −4.95 × 102

std 4.52 3.64 × 10−1 2.84 × 10−1 4.76

f11
ave −3.802 −3.95 × 102 −3.88 × 102 −3.88 × 102

std 9.27 2.23 7.77 5.17

f12
ave −2.742 −2.68 × 102 −2.78 × 102 −2.71 × 102

std 1.28 × 101 8.07 1.05 × 101 1.27 × 101

f13
ave −1.532 −1.66 × 102 −1.63 × 102 −1.62 × 102

std 1.94 × 101 1.03 × 101 1.82 × 101 1.45 × 101

f14
ave 5.53 × 102 7.51 × 102 3.15 × 102 7.05 × 102

std 2.11 × 102 3.08 × 102 1.89 × 102 3.92 × 102

f15
ave 9.83 × 102 1.84 × 103 1.04 × 103 1.62 × 103

std 3.15 × 102 2.50 × 102 3.11 × 102 4.82 × 102

f17
ave 3.29 × 102 3.27 × 102 3.19 × 102 3.31 × 102

std 8.68 5.45 4.20 8.73

f18
ave 4.32 × 102 4.47 × 102 4.30 × 102 4.51 × 102

std 1.07 × 101 6.91 1.15 × 101 1.05 × 101

f19
ave 5.01 × 102 5.02 × 102 5.01 × 102 5.02 × 102

std 5.63 × 10−1 4.35 × 10−1 3.63 × 10−1 6.60 × 10−1

f20
ave 6.04 × 102 6.04 × 102 6.04 × 102 6.04 × 102

std 5.29 × 10−1 3.43 × 10−1 3.83 × 10−1 3.64 × 10−1

f21
ave 1.09 × 103 1.09 × 103 1.09 × 103 1.10 × 103

std 4.96 × 101 3.96 × 101 3.41 × 101 1.37 × 101

f22
ave 1.65 × 103 1.75 × 103 1.34 × 103 1.79 × 103

std 2.83 × 102 3.75 × 102 2.17 × 102 5.17 × 102

f23
ave 2.14 × 103 2.84 × 103 2.08 × 103 2.66 × 103

std 3.03 × 102 2.17 × 102 3.70 × 102 4.33 × 102

f24
ave 1.21 × 103 1.23 × 103 1.22 × 103 1.23 × 103

std 1.47 × 101 2.29 4.75 3.99

f25
ave 1.31 × 103 1.33 × 103 1.31 × 103 1.33 × 103

std 1.32 × 101 1.50 4.59 2.27

f26
ave 1.44 × 103 1.44 × 103 1.44 × 103 1.45 × 103

std 8.24 × 101 6.68 × 101 8.07 × 101 7.05 × 101

f27
ave 1.91 × 103 1.76 × 103 1.76 × 103 1.83 × 103

std 1.12 × 102 4.84 × 101 3.65 × 101 6.43 × 101

f28
ave 2.34 × 103 1.85 × 103 1.96 × 103 1.82 × 103

std 2.36 × 102 2.70 × 102 2.40 × 102 1.98 × 102
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Table 4: Ranki j based on averaged values in Table 3.

f set 1 set 2 set 3 set 4
f1 1.5 3 1.5 4
f2 2 3 1 4
f3 3 1 2 4
f4 2 3 1 4
f5 2 3 1 4
f6 4 2 1 3
f7 3 1 2 4
f8 2 4 1 3
f9 2 3 1 4
f10 3 2 1 4
f11 4 1 2 3
f12 2 4 1 3
f13 4 1 2 3
f14 2 4 1 3
f15 1 4 2 3
f17 3 2 1 4
f18 2 3 1 4
f19 2 3 1 4
f20 2 3 1 4
f21 1 3 2 4
f22 2 3 1 4
f23 2 4 1 3
f24 1 3 2 4
f25 1 3 2 4
f26 2 3 1 4
f27 4 2 1 3
f28 4 2 3 1

Rank j 63.5 73 37.5 96

This section compares the performance of OPRC for
benchmark functions. We selected 27 functions from CEC
2013 benchmark test suite [3] as shown in Table 1. We se-
lected 4 typical parameters as shown in Table 2. The behav-
ior of PRC using these parameters is described in previous
sections. The conditions of the comparison are as follows:
number of searching points is 20, size of dimension is 10,
tmax = 1000. For each trial, the initial values of search-
ing points are given by the uniformed distribution with the
range in Table 1. The fitness of gb at tmax is stored for each
trial, and the final fitness values are averaged by 50 trials.
Table 3 shows the averaged fitness values and the standard
deviations. OPRC with parameter set 3 obtained the best-
averaged values for 18 functions, and it seems superior to
others. We tested the difference between the parameter sets
with pairwise-test [4]. The rank of i-th function and j-th
parameter set, Ranki j, is shown in Table 4. Two parameter
sets are significantly different when following an inequality
is satisfied:

|Rankn − Rankm| > t1−0.01/2

√
2b(A − B)

(b − 1)(k − 1)
= 18.3, (7)

where Rankn and Rankm is sum of ranks calculated by
Rank j =

∑b
i=1 Ranki j, n and m are indexes of a compared

parameter set, t1−0.01/2 is quantile of the F-distribution with
k1 = k − 1 and k2 = (b − 1)(k − 1) degrees of freedom at
0.01 significant level, b and k is a number of functions and
parameter sets, respectively, A =

∑b
i=1
∑k

j=1

(
Ranki j

)2
, and

B = 1
b
∑k

j=1

(
Rank j

)2
. The difference between Rank3 and

other sum of ranks is over 18.3, therefore, it is considered
that the parameter set 3 outperforms than others.

As shown in Sec. 2, the various time-dependent behav-
ior of PRC is observed among the 4 parameters sets. And
performance of OPRC is significantly different depending
on the parameters. This comparison indicates that there is
correlation between time-dependent behavior of PRC and
performance of OPRC.

5. Conclusion

Performances of OPRC between typical parameter sets
are compared statistically. A parameter set that obtains
better result than others are discovered. Moreover, in this
comparison performance of OPRC seems to be correlated
with time-depend behavior of PRC. The analysis of the cor-
relation and the circuit implementation of PRC is future
works. We are working on the implementation by field pro-
grammable analog arrays.
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