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Abstract—Complex-valued neural networks are widely
used to process not only complex-valued information but
also multivalued one. For instance, multivalued represen-
tation with a complex-valued neuron is more suitable for
dealing with multicolor images than binary representation
with a real-valued neuron, because less neurons are needed.
In seeking for another beneficial application of a complex-
valued neuron, we demonstrate that a complex-valued neu-
ral network can provide a heuristic approach to graph col-
oring problems.

1. Introduction

The application field of complex-valued neural networks
have been growing, because complex-valued representa-
tion is natural for wave phenomena with amplitude and
phase information [1]. In recent years, therefore, it has
been increasingly important to explore the fundamental
theory of complex-valued neural networks for their devel-
opments and practical applications. The conventional real-
valued neurons have often been used to represent binary
information and data with a two-state activation function.
Similarly, a complex-valued neuron enables to well repre-
sent multivalued information by using a multilevel activa-
tion function. In this study, we focus on a complex-valued
neural network for processing multivalued information and
its application.

Although the concept of a complex-valued neuron was
presented in the early 1970s [2], its mathematical property
is still under investigation. Some complex-valued neurons
take into consideration both amplitude and phase informa-
tion, while others only uses phase information. The latter
type of complex-valued neuron, whose state is defined on
the unit circle in the complex domain, is called a phasor
model [3] or a multivalued neuron [4]. The characteristics
of the complex-valued neuron, which differ from those of
a real-valued neuron, are the circularity of the phase and
the complex number operations. For realizing a K-valued
neuron, the unit circle is equally divided into K arcs with
the same angle for any integer K ≥ 2 as explained later.
The neuronal state is transformed into one of the K-valued
states by an activation function. A complex-valued Hop-
field network composed of such complex-valued neurons,
which can be regarded as a generalization of the Hopfield

network [5], has been constructed and applied to multistate
associative memory [6]. The complex-valued Hopfield
model can deal with multivalued states with keeping some
important properties of the Hopfield network. Namely, it
is possible to update neuronal states so that a well defined
complex-valued energy function can be monotonically de-
creasing and guarantees convergence of a network state in
a local minimum of the energy landscape. Gray-level im-
age reconstruction is a good application to be processed by
the complex-valued Hopfield network with some modifi-
cations [7, 8]. Another possible application is to find an
optimal solution of a combinatorial optimization problem
if the objective function to be minimized can be rewritten
in a complex quadratic form.

Following the seminal work by Hopfield and Tank [9],
binary and real-valued neural networks have been success-
fully applied to a variety kinds of combinatorial optimiza-
tion problems such as traveling salesman problem [10].
However, there have been few studies on complex-valued
neural networks for solving optimization problems so far.
Thus, we consider graph coloring problems as a possible
application of a complex-valued network in this study. In
vertex coloring of a given graph, the purpose is to find a
way of coloring the vertices of the graph such that no two
adjacent vertices share the same color. Graph coloring is a
classic constraint satisfaction problem with realistic appli-
cations such as time-tabling, short circuit testing in printed
circuits, VLSI design, and register allocation in a compiler.

Section 2 describes the definition of graph coloring and
reviews a conventional energy function-based approach to
the problem. A heuristic algorithm based on a complex-
valued neural network is introduced in Sec. 3, and then ap-
plied to benchmarks of graph coloring in Sec. 4. Summary
is given in Sec. 5.

2. Graph Coloring with Neural Networks

2.1. Vertex Coloring

Graph coloring is a special case of graph labeling. We
limit our focus to a vertex coloring of a planar graph in this
study. Vertex coloring is to assign colors to vertices of a
given graph so that no pair of adjacent vertices having a
common edge share the same color. A coloring using at
most K colors is called a (proper) K-coloring and is equiv-
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alent to the problem of partitioning the vertex set into K or
fewer independent sets. Minimum coloring problem ask-
ing for the smallest number of colors needed to color the
graph is NP-hard, while the corresponding decision prob-
lem (vertex coloring) in the general case is NP-complete.

Let us consider an undirected graph G = {V, E} com-
posed of a set of N = |V(G)| vertices and a set of
M = |E(G)| edges. The set of vertices is denoted by
V = {vi, i = 1, . . . ,N} and the set of edges is by E =
{ei j | vi and v j are connected}. A K-coloring of G is a par-
tition of V into K sets (color classes) V1, . . . ,Vk such that
∀ei j, vi ∈ Vl → v j � Vl.

2.2. Energy Function-Based Approaches

There have been energy-function based approaches to
graph coloring [11, 12]. The previous approach [12] is
briefly introduced here for comparison with our method.
For a graph G with N nodes, a network composed of N
neurons is constructed. An adjacency matrix A = (ai j) has
the components as follows:

ai j =

{
1 if ei j ∈ E
0 if ei j � E . (1)

The color assigned to i-th node is represented by the state
of i-th neuron, i.e., si ∈ {1, . . . ,K}. Each neuron receives
the summation of the inputs from the states of all the ad-
jacent neurons. A specific energy function is defined for a
specific problem such that detection of an optimal solution
is reduced to minimization of the energy function.

The energy function for vertex coloring is given as fol-
lows:

Er(s) =
1
2

N∑
i=1

N∑
j=1

ai jδ(si, s j), (2)

where a color assignment to all vertices of G is denoted
by s = (s1, . . . , sN)t. The function δ(·, ·) is the Kronecker
delta function, i.e., δ(i, j) = 1 if i = j, 0 otherwise. The
energy function (2) is equivalent to the number of viola-
tions of the constraint, that is, the number of edges with
improperly colored vertices. Therefore, the goal is reduced
to minimization of the energy function Er(s) by updating
the neuronal states s.

For a randomly selected index m and a new candidate
state c ∈ {1, . . . ,K}, we consider a new network state s′
where s′m = c and s′i = si for i � m and evaluate the differ-
ence of the energy function, i.e., ∆Er = Er(s′) − Er(s). If
and only if ∆Er < 0, the network state is updated from s to
s′. By iterating the above procedures, the energy function
necessarily reaches a local minimum of the energy land-
scape. This greedy algorithm is quite effective for find-
ing a better coloring in combination with multiple random
restarts.

3. Complex-Valued Neural Network

The complex-valued Hopfield network proposed by
Jankowski et al. [6] is composed of N complex-valued
neurons whose states are defined on the unit circle in the
complex domain. The network state of K-valued neurons
is represented by a complex vector z = (z1, . . . , zN)t where
zn = exp(iknθK) with θK = 2π/K and kn ∈ {0, 1, . . . ,K − 1}
for n = 1, 2, . . . ,N. When K = 2, the complex-valued net-
work is reduced to the binary Hopfield network [5].

The energy function of the complex-valued Hopfield net-
work is given as follows:

Ec(z) = −1
2

N∑
n=1

N∑
j=1

wn jz̄nz j, (3)

which is real-valued if W = (wn j) is an Hermitian matrix.
It is guaranteed that the energy function value is monoton-
ically decreasing for each update of a neuronal state as fol-
lows:

z′n = csignK

⎛⎜⎜⎜⎜⎜⎜⎝eiθK/2
N∑

j=1

wn jz j

⎞⎟⎟⎟⎟⎟⎟⎠ (4)

where z′n is the updated state of the n-th neuron and the
weighted sum of inputs multiplied by the rotational factor
is given to the activation function. The complex-signum
function csignK is defined as follows:

csignK(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e0 0 ≤ arg(z) < θK ,
eiθK θK ≤ arg(z) < 2θK ,
...

...
eiθK (K−1) (K − 1)θK ≤ arg(z) < 2π.

(5)

In our previous work [8], the update scheme (4) is rewrit-
ten as follows:

z′n = rK ◦ fK ◦ qK

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

wn jz j

⎞⎟⎟⎟⎟⎟⎟⎠ , (6)

where rK(x) = exp(ixθK) for x ∈ [0,K), fK(x) = [x] for x ∈
[0,K), and qK(z) = arg(z)/θK . Then, in order to improve
this model, a multilevel step function fK is replaced by its
nonlinear version:

mK(x) =

⎛⎜⎜⎜⎜⎜⎜⎝
K+1∑
i=0

g(x − i)

⎞⎟⎟⎟⎟⎟⎟⎠ − 1
2

(mod K), (7)

where g(x) = 1/(1 + exp(−x/ε)). This multilevel sigmoid
function, which is used as an activation function in gener-
alized Hopfield networks [13, 14], is incorporated into the
complex-valued activation function. The modification is
quite reasonable because the performance of conventional
neural networks has often been enhanced by a factor of
nonlinear dynamics. The update rule is given as follows:

z′n = rK ◦ mK ◦ qK

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

wn jz j

⎞⎟⎟⎟⎟⎟⎟⎠ , (8)
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Figure 1: Bifurcation diagram of the multilevel sigmoid
function map (9) with K = 8.

where rK ◦mK ◦ qK denotes the complex-sigmoid function.
Here the rotational factor for the weighted sum of inputs
is not necessary because the multilevel function is already
shifted. The neurons are updated asynchronously. The
complex-sigmoid function approximates the csignK func-
tion in the limit of ε → 0. In this sense, the network with
the update scheme (8) is a generalization of that with the
complex-signum activation function [6]. The output state
of zn is expressed as exp(iknθK) by discretization with the
csignK function.

In order to understand the effect of the nonlinearity of
the function (7), let us consider the discrete-time dynamical
system as follows:

x(t + 1) = mK(x(t)). t = 0, 1, . . . (9)

Figure 1 shows the bifurcation diagram of the map (9) with
variation of the value of the nonlinearity parameter ε. For a
small value of ε, K stable fixed points are coexisting. The
multiple stable states merge into a smaller number of stable
states with increase of ε. Therefore, we need to set ε at an
appropriate value for representing a K-valued state with a
single complex-valued neuron.

For solving a graph coloring problem, the adjacency ma-
trix is associated with the weight matrix, i.e., W = −A.
Since W is real-valued and Hermitian,

Ec(z) =
1
2

N∑
n=1

N∑
j=1

an j cos((k j − kn)θK). (10)

where the cosine term takes a maximum value 1 if and
only if k j = kn. Therefore, minimizing the energy function
Ec has an effect on decreasing the number of edges which
share the same color vertices. However, it should be noted
that an optimal coloring is not necessarily corresponding to
Ec = 0.

4. Numerical Experiments

Vertex coloring problems are solved by a heuristic
method based on the complex-valued neural network
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Figure 2: The transition of the violations with the min-
imization of the energy function of the energy function-
based approach (EFBA) and the complex-valued neural
network (CVNN) for le450 5c.

(CVNN). Our purpose is to investigate the effect of the
nonlinearity parameter on the optimization performance
and compare it with the energy function-based approach
(EFBA). The two methods were implemented by C, com-
piled with the GNU gcc compiler. The algorithm was tested
on the official benchmarks from the 1993 DIMACS graph
coloring challenge [15]. The initial states of the neurons
were determined randomly.

Figure 2 shows the transition of the number of violations
with repeated updates of neuronal states in optimization
of the problem le450 5c. We can see that the proposed
method is better than the conventional approach in terms
of the quality of the finally obtained solution. The compu-
tation time until convergence is almost the same between
the two methods. It is obvious in Fig. 2 that the EFBA
is based on the monotonically decreasing energy function
while the CVNN permits an increase of the energy level.

With variation of the nonlinearity parameter ε, the per-
formance of the optimization with the CVNN is variable.
After trial-and-error testing with different values of ε, we
fix ε at 0.2 in the numerical experiments. Table 1 shows
the comparison results between the CVNN and the EFBA
in some benchmarks. In all the simulations, the maximum
number of updates is fixed. For problems with smaller K
(le450 5a and le450 5c), the CVNN is better than or com-
parable to the EFBA. The EFBA is better than the CVNN
for other problems. The difference between the two meth-
ods becomes larger for the problems with a larger value of
K. The reason of this fact may be due to the multiplic-
ity of the cosine term in (10) in the complex-valued net-
work. Namely, cos((k j − kn)θK) takes a component of the
set {1, cos(θK), . . . , cos((K − 1)θK)}. Therefore, if the two
connected vertices do not have the same color, the corre-
sponding cosine term is biased depending on the pair of
the two colors. The bias becomes diverse as K increases.
A future issue to be considered includes elimination of the
bias for better performance of the CVNN.
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Table 1: Simulation results on the 1993 DIMACS Graph Coloring Challenge [15] with the complex-valued neural network
(CVNN) and the energy function-based approach (EFBA) [12]. The number of violations is indicated by v.

Graph CVNN EFBA
name N = |V | M = |E| K v v/M% v v/M%

le450 5a 450 5714 5 583.4 10.2 584.0 10.2
le450 5c 450 9803 5 22.0 0.22 80.8 0.82

le450 15a 450 8168 15 268.0 3.28 128.2 1.57
le450 15c 450 16680 15 742.4 4.45 567.8 3.40
le450 25a 450 8260 25 314.0 3.80 23.4 0.28
le450 25c 450 17343 25 834.4 4.81 188.0 1.08

5. Summary

In the present study, graph coloring problem has been
solved by a complex-valued neural network for multival-
ued information processing. Instead of minimizing the ob-
jective function corresponding to the number of edges con-
necting nodes with same colors, we have considered a re-
laxation problem which is to minimize a complex-valued
energy function. Our simulation has shown that in some
benchmarks the heuristic algorithm based on the complex-
valued network has brought about better solutions com-
pared with a conventional energy function-based approach.
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