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Abstract—Binocular rivalry is perceptual alternation
that occurs when different images are presented to the two
eyes. Despite efforts of many neuroscientists, the mech-
anism of binocular rivalry still remains unclear. In multi-
stable binocular rivalry, which is a special case of binocular
rivalry, it is known that the perceptual alternation between
paired patterns is more frequent than that between unpaired
patterns. This result suggests that perceptual transition in
binocular rivalry is not a simply random process and the
memories stored in the brain play an important role for the
perceptual transition. In this paper, we propose a hierarchi-
cal chaotic neural network model for multistable binocular
rivalry and show that our model reproduces some charac-
teristic properties in multistable binocular rivalry.

1. Introduction

In cognitive science, one of the interesting topics is sub-
jective visual perception. Binocular rivalry is the famous
phenomenon used in this topic. When two different vi-
sual stimuli are presented to one’s each eye, he/she percepts
not the mixed single image but the each presented images
alternately[1].

In most cases, subjective perception mainly alternates
between two competing images. However, some stimulus
sets can induce more than two plausible interpretations. For
example, when upright triangle is presented to right eye and
inverted triangle to left eye, subjective perception alternates
among four patterns; upright triangle (presented to right
eye), inverted triangle (presented to left eye), left-skewed
parallelogram (mixture of right half of right eye and left
half of left eye), right-skewed parallelogram (mixture of
left half of right eye and right half of left eye) (Figure 1). It
is known that the brain can combine nonoverlapping parts
of two monocular images, for example the right half of the
image presented one eye and the left half of another eye, to
form one coherent perception[2]. This phenomenon, called
interocular grouping, enables subjects to perceive four im-
ages, i.e., two monocular images and two interocular im-
ages.

In contrast with bistable binocular rivalry, there has been
few works on the dynamics of multistable binocular rivalry.
Suzuki and Grabowecky reported some interesting proper-

Figure 1: Example of a stimulus used in multistable binoc-
ular rivalry.

ties in multistable binocular rivalry [3]. In this study, they
used stimulus sets inducing four stable perceptions by us-
ing interocular grouping and these four patterns are clus-
tered into two related pairs in some stimulus sets. One
important result is that when the stimulus sets which have
related pairs were presented to subjects, the subjective per-
ceptions did not change randomly and these perceptual al-
ternations were more frequent between paired patterns than
between unpaired patterns. This bias of transition proba-
bility is independent of whether the perceptual images are
monocular images or interocular images. However, when
the used stimulus sets didn’t have related pairs, such dif-
ferences in the transition probability disappeared. .They
accounted for these results in terms of attractor diagram.
Perceptual states of related pairs were separated by lower
potential barriers. Therefore the transition probabilities be-
tween related pairs were higher than that between unrelated
shapes.

The brain areas forming the setting of binocular rivalry
is one of main issues [4]. In one view point, binocular ri-
valry arises from interocular competition in lower level vi-
sual area (V1, LGN). In another view point, higher level
visual areas contribute to binocular rivalry and what this
phenomenon reflects is not competitions between the eye
stimuli however those between the object representations.
Although many scientists have worked vigorously to ad-
dress this problem, the brain areas playing a critical role
for binocular rivalry remain inconclusive.

The mechanism of the perceptual switching is also de-
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bated. It is known that the dynamics of each perceptual
dominance duration is well fitted by gamma distribution or
lognormal distribution [5]. Because the timing of percep-
tual switching is apparently random and the length of a par-
ticular dominance duration cannot be predicted by the pre-
ceding dynamics of perceptual alternation, the mechanism
underlying binocular rivalry is supposed to be a stochastic
process. However, the paper of Suzuki and Grabowecky
implies that the memories in the brain have an effect on the
dynamics of binocular rivalry and the mechanism of binoc-
ular rivalry is not simply random process.

In this paper, we present a model for multistable binoc-
ular rivalry, which consists of chaotic neurons and yields
some chaotic attractors corresponding to each perceptual
state. The state of this network wanders from attractor to
attractor without external noise. The distribution of dura-
tions which network state remains around each attractor is
well fitted by lognormal distribution and some other prop-
erties obtained by psychological experiments are also re-
produced. In section 2, we will describe two theoretical
topics based on our model and explain our model in detail.
Simulation results will be presented in section3 and we will
conclude in section 4.

2. Model framework

In this section, we explain our proposed model for multi-
stable binocular rivalry. This model is based on two ideas:
one is chaotic neural network model and the other is pre-
dictive coding model. The former is an artificial neural
network model composed of chaotic neurons which show
chaotic dynamics in certain parameters and the latter is a
model of visual processing which interprets a brain func-
tion to predict external world. Firstly we describe these
two basic ideas, and then, we explain our proposed model.

2.1. Chaotic neural network model

Chaotic neural network model is an artificial neural net-
work model composed of chaotic neurons [6]. Chaotic
neuron model is one of single neuron models which shows
chaotic dynamics and described as

xi(t + 1) = f
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vi j
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where xi(t) is the ith neuron output with an analogue value
between 0 and 1 at the discrete time steps. f and g are
the output function and the refractory function respectively.
A(t) is the external stimulation at the time t. vij and wij are

synaptic weights to the i th neuron from the j th external in-
put and from j th internal neuron respectively. ke, kf , kr are
the decay parameters for the external inputs, the recurrent
connection, and the refractoriness respectively, and α and
Θ are the refractory scaling parameter and the threshold re-
spectively. Using the appropriate parameters, this network
does not remain particular stable point however nonperiod-
ically retrieves various patterns embedded in this network
one after another.

2.2. Predictive coding model

Predictive coding model is a model of visual processing
which interprets a brain function to predict external world
[7]. In this model, feedback projections carry predictions
of lower level neural activity from a higher level to a lower
level, whereas feedforward projections carry residual errors
between the predictions and actual neural activity from a
lower level to a higher level. These errors are used by the
predictive estimator at each level to correct its current esti-
mate of the input signal and generate the next prediction.

2.3. Proposed model

We propose a hierarchical chaotic neural network model
based on foregoing two models for multistable binocular
rivalry. This model is composed of two layers: Lower
layer, which is assumed to lower visual area, and higher
layer, which is assumed to higher visual layer. For replicat-
ing binocular rivalry condition, we prepare two input lay-
ers which correspond to right eye and left eye, and lower
layer is connected with both two input layers. For inter
layer connections, we adopt the idea of predictive coding
model: feedback connections carry predictions and feed-
forward connections convey residual errors calculated from
predictions and actual neural activities (Figure 2).

Figure 2: Structure of proposed model.

The dynamics of the lower layer neurons x1 as follows:

x1(t + 1) = f {ye(t + 1) + yi(t + 1) + yr(t + 1) + yfb(t + 1)},
ye(t + 1) = keye(t) + αeU−1

1 (E − U1x1(t)),
yfb(t + 1) = kfbyfb(t) + αfb(U2x2(t) − x1(t)),
yi(t + 1) = kiyi(t) + αiW1x1(t),
yr(t + 1) = kryr(t) − αrx1(t) − θ(1 − kr),
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and the higher layer neurons x2 are described as follows:

x2(t + 1) = f {zff(t + 1) + zi(t + 1) + zr(t + 1)},
zff(t + 1) = kff zff(t) + βffU−1

2 (x1(t) − U2x2(t)),
zi(t + 1) = ki zi(t) + βiW2x2(t),
zr(t + 1) = kr zr(t) − βrx2(t) − θ(1 − kr),

where each y and z is the internal state term of the lower
layer neurons and the higher layer neurons respectively.
Suffixes e, fb, i, r, and ff mean external inputs, feedback
input, intrinsic connection, refractoriness, and feedforward
input respectively. Each α and β is the scaling parameter,
and each k denotes the decay parameter respectively. Each
U and W are the synaptic weights of the interlayer connec-
tions and the intrinsic connections respectively. E is the
external input vector.

For the output function f , we use the logistic function
represented by

f (y) =
1

1 + exp(−y/ε)
,

where ε is a parameter for the steepness of the function.

3. Simulation results

We considered a simple case of multistable binocular ri-
valry as figure 1. Four patterns were used for input images
and these are composed of two right visual field images and
two left visual field images. Accordingly, we used four bi-
nary patterns Ei (i = 1, 2, 3, 4) which were composed of
four orthogonal vectors (R1, R2, L1, L2) for external input
vectors.

E1 =

(
L1
R1

)
, E2 =

(
L2
R2

)
, E3 =

(
L1
R2

)
, E4 =

(
L2
R1

)
.

The intrinsic connections W1 and W2 are determined ac-
cording to the following symmetric auto-associative matrix
of stored patterns:

W1 =
1
M

M∑
p=1

(2Ap − 1)(2Ap − 1)−1,

W2 =
1
N

N∑
p=1

(2Bp − 1)(2Bp − 1)−1,

where Ap and Bp are the p th stored pattern in the lower
layer and the higher layer respectively, and 1 indicates a
vector whose components is all 1. M and N are the number
of stored patterns in the lower layer and the higher layer
respectively. In this simulation, M = 4 and N = 2.

The lower layer stores four binary patterns Ai (i =

1, 2, 3, 4) and the higher layer stores two binary patterns
Bi (i = 1, 2). We assumed that the network state of the

lower layer Ai corresponds to perceptual state of external
input Ei. The synaptic weight of the interlayer connections
between the input layer and the lower layer U1 is defined
as follows:

U1 =
1
M

M∑
p=1

(2Ep − 1)(2Ap − 1)−1.

On the other hand, the higher layer encodes the informa-
tion of relationships among the lower layer memory pat-
terns. In this simulation, A1 and A2 belong to one group
(B1) and A3 and A4 belong to the other group (B2). The
synaptic weight of the interlayer connections between the
lower layer and the higher layer U2 is determined by fol-
lowing equation:

U2 =
1
N

N∑
p=1

{
(2A2p−1 − 1)(2Bp − 1)−1

+ (2A2p − 1)(2Bp − 1)−1
}
.

The number of neurons in the lower layer m is 16 and that
of the the higher layer n is 4. Parameter values are fixed to
following values, i.e., ke = k f b = k f f = 0.01, ki = 0.01,
kr = 0.96, αe = 0.01, α f b = 0.19, αi = 0.22, αr = 0.009,
β f f = 0.01, βi = 0.14, βr = 0.009, θ = 0 and ε = 0.015.

3.1. Multistable binocular rivalry

When E1 and E2 were used as external input, the net-
work shows a nonperiodic transient behavior. For evalu-
ating the network state, we define the similarities of the
network state to each memory pattern as follows,

s(p)
1 (t) =

1
m

(2Ap − 1)−1(2x1(t) − 1),

s(p)
2 (t) =

1
n

(2Bp − 1)−1(2x2(t) − 1).

Figure 3 shows a typical time course of s(p)
1 (t). We can

see that the network state of lower layer transits among

Figure 3: Typical time course of sp
1 (t).
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Figure 4: Distribution of dominance durations.

memory patterns. A histogram of dominance durations
of the lower layer is shown in Figure 4. It appears to
be unimodal and skewed with a long tail. The solid
line is gamma distribution with parameters k = 38.7308
and θ = 1.1091, where the gamma distributions f (x) =

xk−1/Γ(k)θk · exp (−x/θ). This shape of the histogram is
consistent with experimental results.

In the lower layer, it is noted that the transitions between
paired memory patterns (i.e. between A1 and A2, and be-
tween A3 and A4) occur more frequently than that between
non paired memory patterns (e.g. between A1 A3). For
further analyzing, we computed relative transition proba-
bilities pr. pr is defined by following equation,

pr(A|B) =
p(A|B)

p(A|B) + p(A|C) + p(A|D)
,

where p(A|B) is the transition probability from patten B to
pattern A. pr should be 1/3 if there was no bias in tran-
sition probabilities. For simplicity, we sort pr into two
groups: one is the relative transition probabilities of paired
pattern transitions (p(paired)

r ) and the other is that of un-
paired pattern transitions (p(unpaired)

r ). p(paired)
r is a aver-

age of pr(A1|A2), pr(A2|A1), pr(A3|A4) and pr(A4|A3).
p(unpaired) is a average of all pr other than above . From
Figure 5, we can see that p(paired)

r is larger than 1/3. This
bias of transition probability means that alternations be-
tween paired patterns are more frequent than that between
unpaired patterns.

4. Conclusion

In this paper, we have proposed a hierarchical chaotic
neural network model for multistable binocular rivalry.
This model reproduces some characteristic properties in
multistable binocular rivalry, i.e., the shape of the domi-
nance duration histogram which is well fitted by gamma
distribution function and the bias of relative transition prob-
abilities. These results suggest that the chaotic neurody-

Figure 5: Relative transition probabilities.

namics is one of potential candidates of the mechanism of
binocular rivalry.
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