
Maximum Flow Problem to be solved based on Unidirectional Cellular Neural
Network

Masatoshi Sato†, Hisashi Aomori†, and Mamoru Tanaka†

†Department of Electrical and Electronics Engineering ,Sophia University
7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan

Phone:+81-3-3238-3878, Fax:+81-3-3238-3321
Email: masatoshi@tlab.ee.sophia.ac.jp

abstract

In advanced of networked society by the internet, the
way how to send data fast with a little loss becomes an
important problem. It is a generalization maximum flow al-
gorithm to give the best solution for the network-flow prob-
lem that which route is better to excange data. Therefore,
the importance of the maximum flow algorithm is grow-
ing more and more. In this paper, we propose a novel
neural network having a saturation characteristic for max-
imum flow problem. The proposed neural network can be
realized by using nonlinear resistive network having a sat-
uration characteristic of current. Especially, since neural
network can independently process the operation in each
neuron, it has a very high parallel processing performance.
That is, the proposed method can be applied to the large-
scale network-flow problem by a large-scale parallel pro-
cessing.

1. Introduction

In the modern society, the spread of the internet is ad-
vanced more and more. Thus, the method how to send
data fast with a little loss is very important, and to send
data most efficiently, how much the communication charge
is allocated in each route becomes a problem. This prob-
lem is well known as a network flow problem, and maxi-
mum flow algorithm gives the best solution for the problem
which route is better to exchange data. Hence, the impor-
tance of the maximum flow algorithm is growing more and
more.

The network flow problem [8][9] is a problem of throw-
ing a lot of quantity of flow (communication charge) be-
tween the starting point and the terminal point on the net-
work. The flow on the branch that satisfies the following
conditions is called flow; Flow does not exceed the ca-
pacity of the branch (the capacity condition), and sum of
flow of inflow is equal to sum of flow of outflow (the flow
preservation condition). Some nodes exist between net-
works, and they are connected by the branch. The capacity
of the branch (the capacity of communication) and the gain
exist in the branch. The capacity of the branch shows the
limit that can throw the flow, and the gain can enlarge or

reduce the flowing the flow[7]. In this research area, by us-
ing abovementioned conditions, the following algorithms
are developed for solving the maximum flow problem.

Ford-fulkerson algorithm [1][2] and preflow push al-
gorithm [3][4] are well known as an algorithm to solve
the maximum flow problem. The idea behind the Ford-
Fulkerson algorithm is as follows; As long as there is a
path from the source (start node) to the sink (end node),
with available capacity on all edges in the path, we send
the flow along one of these paths. Then we find another
path, and so on. A path with available capacity is called an
augmenting path. The idea behind the preflow push algo-
rithm is as follows; The maximum flow is requested while
maintaining preflow where the augmenting path dose not
exist by using preflow that eases the flow preservation con-
dition. Since ford-fulkerson algorithm is a repetition of an
easy procedure, validity can be intuitively understood, but
it takes a lot of computing time. The preflow push algo-
rithm is high-speed and practicable algorithm now.

In this paper, we propose a novel neural network which
has a saturation characteristic, and we show that the pro-
posed neural network can suit to the maximum flow prob-
lem [5][6]. The weight between each neuron is based on
Ohm’s law, and nonlinear resistance with the saturation
characteristic where the I −V characteristic is described by
the Sigmoid function is used in the proposed method. The
starting point and the terminal are assumed to be a source
of voltage and ground, respectively. When the voltage of
a constant amount is applied to the starting point, the node
voltage of each node is converged to equilibrium state. In
such a condition, the current value between each neuron
is equivalent to the flow, and the total of the current that
flow out from the starting point are called maximum flow.
Generally, the flow that flows between nodes is interactive.
However, in this research, the direction of the flow is as-
sumed to only one direction. The proposed method is de-
scribed by the state equation concerning the node voltage
of the neuron, and the behavior of the dynamical system
is described as a differential equation. Since the network
analysis by our method is equal to the problem of request-
ing the current distribution by the nonlinear resistive circuit
analysis, it becomes possible to obtain the solution very
high-speed. By the computer simulation, we show that the
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current distribution between nodes is equal to an analytical
result by the conventional methods at equilibrium state.

2. Maximum Flow Algorithm

The theory of the network flow problem is one of the
effective technique to solve the problem by linear program-
ming. Especially, the theory is extremely effective to repre-
sent the model of the network, for example transportation
problem, assignment problem and scheduling problem.

When a branch capacity ck which has positive constant
is allocated in each branch bk ∈ B(N) on network N as
a graph, the N is called communication network or trans-
portation network. And it is shown as N = [V(N), B(N)]
for nodes set V[N]. C(N) is a set of branch capacity {ck}.

A directed branch bk connected from node vi to v j on N
is denoted by bk = (vi, v j) = bi j.

A flow f from s ∈ V(N) to t(t � s) ∈ V(N) in the com-
munication network N is defined by

∑

v j∈Γ(vi)

f (vi, v j) −
∑

v j∈Γ−1(vi)

f (v j, vi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

F : vi = s
−F : vi = t
0 : vi � s, t,

(1)

0 � f
(
vi, v j

)
� c
(
vi, v j

)
,
(
vi, v j

)
∈ B(N), (2)

where

Γ(vi) = v j|(vi, v j) ∈ B(N), (3)

Γ−1(vi) = v j|(v j, vi) ∈ B(N). (4)

F = F( f ) in Eq. (1) is the value of flow f , and node s and
t are the source and the sink respectively.

Let the left part of Eq. (1) be the flow that flows out from
vi, then the Eq. (1) represents the restriction, where the flow
from source s is F and the flow from sink t is −F and the
flow from arbitrary vi � s, t is 0. Also, if we define that the
flow f (vi, v j) that flows in each (vi, v j) ∈ B(N) is the branch
flow, Eq. (2) represents the restriction where the branch
flowing on each branch bi j flows only in the direction from
vi to v j and it does not exceed the branch capacity c(vi, v j).

In the communication network N, a branch set (X, Y) is
defined as

(X, Y) = {(vi, v j) ∈ B(N)|vi ∈ X, v j ∈ Y}, (5)

where X, Y ⊂ V(N). The branch class (X, Y) has source
on X and sink on Y. For arbitrary flow f , the flow f (X, Y)
which flows (X, Y) is given by

f (X, Y) =
∑

(vi ,v j)∈(X,Y)

f (vi, v j). (6)

In the flow f of the communication network N, a flow f0
that gives the maximum value of F( f ) expressed by F0 =

max[F( f )] is called the maximum-flow.

3. Neural Network with Saturation Characteristic for
Network-Flow Problem

3.1. Proposed Neural Network

Figure 1: Network topology of proposed method

Figure 2: Association between neuron i and j

The network topology of proposed method is shown in
Fig. 1. Input layer and output layer of the network are cor-
responding to start point S and terminal point T , and each
point corresponds to a single neuron, and layer number of
inner layer is m. Additionally, the propagation between the
neighboring neurons is only one direction. In other words,
the association from neuron vi to neuron v j is defined as
bi j, that is, if bi j exists, b ji dose not exist. When all the
numbers of nodes except the start point S and the terminal
point T are n, the maximum number of branches that meets
the condition where connection between nodes is only one
direction is n(n − 1)/2, and layer number of inner layer is
m = 1. The layer number of inner layer changes depending
on how to connect the neuron. When we focus on the neu-
ron vi, Fig. 2 shows weight Ai j that exists between neuron
v j connected with neuron vi. The proposed network has the
saturation characteristic that the entire network converges
to the equlibrium state if a certain amount of the current in
starting point s goes out. The I−V characteristic from neu-
ron vi to neuron v j that shows the feature of this network is
described by

Ii j =
Ai j

1 + exp(v j − vi)
, (7)

where Ai j is maximum capacity c(vi, v j) of the current in bi j

and a positive constant. If bi j doesn’t exist, then Ai j = 0.
Ii j is a current that flows from neuron vi to v j, and ui and u j
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are the node voltages of neuron vi and v j respectively. Let
f (x) be

f (x) =
1

1 + exp(−x)
, (8)

then, Eq.(8) can be rewritten by

Ii j = Ai j f (vi − v j). (9)

The state equation with respect to the neuron vi is given by

Fi(ui) ≡ Ci
dui

dt
= −

n∑

j=1

Ai j f (vi − v j), (10)

where Ci is a capacitor that exists between neuron i and the
ground. By solving the simultaneous differential equation
concerning the vi (i = 1, 2, · · · , n), the state of each neuron
(node voltage) vi is obtained. The potential difference be-
tween neurons which have the connections is assigned to
Eq. (10), and by solving Eq. (10), the current value be-
tween each neuron is obtained.

3.2. Reproduction of Network by Nonlinear Resistive
Network

Figure 3: The resistive network using nonlinear resistances

In this paper, the proposed neural network is simulated
by using the nonlinear resistive circuit shown in Fig. 3.
The direction indicated by the arrow in figure is a direction
where the current flows. Each branch (vi, v j) can be re-
placed with the element of nonlinear resistance. Each con-
ductance between each node (vi, v j) is shown c(vi, v j), and
c(vi, v j) corresponds to the amount of the maximum current
that can flow in each branch. Each current value I is shown
by I − V characteristic given by Eq. (8). The voltage gen-
erator is set to starting point S , and terminal T is assumed
to be a ground. Each node voltage ui(i = 1, 2, · · · , n) is
saturated at a certain time when the voltage from the volt-
age generator is stepped up, and the current value between
nodes can be obtained in this saturated condition. Current
value Ii j between each neuron in the state of equilibrium of
this network can be considered to be flow fi j, and the sum
total of the current that flows out from starting point S is
maximum flow F0.

4. Simulation Results

In this research, we use a network as shown in Fig. 1,
and the maximum flow of given network is obtained using
our method. The number of neurons except the start point
and the terminal are 80, and the layer number of inner layer
is m = 8, and each inner layer has 10 neurons. The total of
the branch is 720, and the weight of each branch is gener-
ated randomly. The proposed circuit is analyzed by a cir-
cuit simulator (SDP). Since the shigmoidal function can be
approximated by the piecewise linear (PWL) function, we
replace it with the PWL function.

Figure 4: The time transient of node voltage of node 1

The simulation results are shown in Table 1 and Table
2. Table 1 shows analysis result of the flow that flows out
from S , and Table 2 shows analysis result of the flow that
flows out from Node1. From Table 1, maximum-flow F0 is
480 (F0 = f (S , 1) + f (S , 2) + · · · + f (S , 10)). Additionally,
at node 1, sum of the flow of inflow is 10 from Table 1, and
sum of the flow of outflow is 10.001 from Table 2. That is,
The flow preservation condition and the capacity condition
are satisfied from Table 1 and Table 2.

The time transient of node voltage of node 1 is shown in
Fig. 6. This time transient figure is a waveform using the
normalized network where The capacitor of each neuron is
Ci = 1(F). Actually, when the integrated circuit is used, the
convergence time becomes very short. That is, the analysis
by the proposed method can obtain the solution at the very
high speed.

5. Conclusion

In this paper, novel neural network with the saturation
characteristic for the maximum flow problem was pro-
posed. By using the proposed neural network, the equiv-
alent result of the maximum flow algorithm is obtained. In
addition, our method was an effective algorithm for obtain-
ing the solution at the very high speed.
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Table 1: Flow that flows out from S
Node Number Nonlinear Resistance Node Voltage Node Voltage Potential Difference current value

of m(= 1) of S (A) of m(= 1) (B) (A)-(B) (Flow)
1 10 (Ω) 10 (V) 8.98796 (V) 1.01204 (V) 10(A)
2 20 (Ω) 10 (V) 9.0061 (V) 0.9939 (V) 19.878(A)
3 30 (Ω) 10 (V) 9.02518 (V) 0.97482 (V) 29.2446(A)
4 40 (Ω) 10 (V) 9.0452 (V) 0.9548 (V) 38.192(A)
5 50 (Ω) 10 (V) 9.06584 (V) 0.93416 (V) 46.708(A)
6 60 (Ω) 10 (V) 9.08682 (V) 0.91318 (V) 54.7908(A)
7 70 (Ω) 10 (V) 9.10782 (V) 0.89218 (V) 62.4526(A)
8 80 (Ω) 10 (V) 9.08861 (V) 0.91139 (V) 72.9112(A)
9 80 (Ω) 10 (V) 9.08861 (V) 0.91139 (V) 72.9112(A)

10 80 (Ω) 10 (V) 9.08861 (V) 0.91139 (V) 72.9112(A)
Maximum Flow 479.9996(A)

Table 2: Flow that flows out from Node1
Node Number Nonlinear Resistance Node Voltage Node Voltage Potential Difference current value

of m(= 2) of Node1 (A) of m(= 2) (B) (A)-(B) (Flow)
1 90 (Ω) 8.98796 (V) 8.9494 (V) 0.03856 (V) 3.4704(A)
2 10 (Ω) 8.98796 (V) 8.95688 (V) 0.9939 (V) 0.3108(A)
3 20 (Ω) 8.98796 (V) 8.9637 (V) 0.97482 (V) 0.4852(A)
4 30 (Ω) 8.98796 (V) 8.96904 (V) 0.9548 (V) 0.5676(A)
5 40 (Ω) 8.98796 (V) 8.97268 (V) 0.93416 (V) 0.6112(A)
6 50 (Ω) 8.98796 (V) 8.97461 (V) 0.91318 (V) 0.6675(A)
7 60 (Ω) 8.98796 (V) 8.97478 (V) 0.89218 (V) 0.7908(A)
8 70 (Ω) 8.98796 (V) 8.97321 (V) 0.91139 (V) 1.0325(A)
9 70 (Ω) 8.98796 (V) 8.97321 (V) 0.91139 (V) 1.0325(A)

10 70 (Ω) 8.98796 (V) 8.97321 (V) 0.91139 (V) 1.0325(A)
Total Outflow of Node1 10.001(A)
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