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Abstract—PSO network is the method of dividing pop-

ulation of PSO into multiple sub-swarm groups, and each

sub-swarm group is connected based on network structure.

In PSO network, the parameters which characterize net-

work structure affect the search performances significantly.

However, such an effect has not been investigated. In this

paper, the deterministic PSO network with deterministic

couplings is proposed. The proposed model does not have

stochastic dynamics and has only deterministic dynamics.

We investigate the characteristic of the D-PSON-D and per-

form the numerical experiments. We then clarify the suit-

able parameters for the network structure.

1. Introduction

Recently, various systems become large and complicated

with developing technology. So, it is difficult to search op-

timum statements of the systems that satisfy constrained

conditions within realistic time. Meta-heuristics which

attract many researchers can search the acceptable solu-

tions within realistic time. Particle Swarm Optimization

(PSO)[1],[2] is one of the powerful meta-heuristics.

PSO has a lot of superior characteristics, such as low

computational cost, little number of parameters, fast con-

vergence characteristic and easy implementation, com-

pared with other meta-heuristics. PSO is based on social

behavior as a stylized representation of the movement of

organisms such as a bird flock or fish school. These crea-

tures determine the direction of movement by using their

velocity information, position information, and direction

of the swarm. In PSO, the particles corresponding to these

creatures move to the direction to desired solutions in the

search space.

Because particles share the best information in the

swarm, if the best information is updated by a local min-

imum, all particles can move to and converge to the local

minimum. Various method to improve the weak point have

been proposed. In network structure PSO (NPSO)[3], each

particle shares the information between neighbor particles.

Then, it is able to avoid propagating the best information si-

multaneously and trapping into local minimum. The algo-

rithms based on such a network topology between particles

have been proposed actively[3]∼[7]. Multi swarm methods

have also been proposed[8]∼[10].

In our previous work, we proposed PSO networks with

deterministic couplings (PSON-D)[10]. In PSON-D, the

population is divided into multiple sub-swarm groups. The

multiple sub-swarm groups are connected to each other for

purpose of communication. Each sub-swarm group con-

nects to the other sub-swarm groups based on network

structure. When the best information is updated in one

of sub-swarm groups, the interprocess communication oc-

curs between only connected sub-swarm groups. Even

if one of the sub-swarm groups traps into a local mini-

mum, the sub-swarm group can escape from the local min-

imum by the interprocess communication with neighbor

sub-swarm groups. In PSON-D, network topology between

sub-swarm groups and between particles affect the search

performances. However, a investigation of these has not

been performed sufficiently so far.

In this paper, we investigate the search performances of

PSON-D. In order to elucidate the influence of the net-

work topology, we propose the deterministic PSON-D (D-

PSON-D). D-PSON-D is evaluated in the numerical simu-

lations.

2. PSO networks with deterministic couplings (PSON-

D)

In this section, the PSO networks with deterministic cou-

plings (PSON-D) are explained. Figure 1 shows the exam-

ple of PSON-D. In this figure, four sub-swarm groups are

connected to two neighbor sub-swarm groups and six parti-

cles in each group are connected to two neighbor particles.

In PSO, ith particle only shares the information between

neighbor particles. The number of neighbor particles with

which each particle shares the information is characterized

as the Degree In the Group (DIG). In PSON-D, each sub-

swarm group shares the information between neighbor sub-

swarm groups. The number of neighbor sub-swarm groups

with which each group can communicate to each other is

characterized as the Degree Between the Groups (DBG).

In PSON-D, the velocity of each particle is updated by

using the personal best solution (pbest), the best solution

(lbest) between the neighbor particles and the best solution

(glbest) between the neighbor sub-swarm groups. The ve-

locity and position are updated by following equations.

vt+1
i = wvt

i + c1r1(pbestt
i − xt

i) + c2r2(lbestt
i − xt

i)

+c3r3(glbestt
g(i) − xt

i) (1)

xt+1
i = xt

i + vt+1
i (2)

where xt
i
and xt+1

i
denote the current and next position vec-

tors of the ith particle, vt
i

and vt+1
i

denote the current and
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Figure 1: Example of PSON-D

next velocity vectors of the ith particle, and t denotes the

search iteration. w is an inertia coefficient. c1, c2 and c3

are acceleration coefficients, and r1, r2 and r3 are uniform

random numbers from 0 to 1. g(i) denotes the index of the

sub-swarm group to which the ith particle belongs. When

the best “lbest” is updated in g(i)th sub-swarm group,

g(i)th sub-swarm communicates to the neighbor sub-swarm

groups and updates “glbestg(i)” by receiving “lbests” of

connected sub-swarm groups. In PSON-D, even if one

sub-swarm group traps into local minimum, the sub-swarm

group can escape from the local minimum by the effect of

“glbestg(i)”.

The algorithm of PSON-D is described by the following

procedures.

Step:1 Let t = 0. For all i, the vectors v0
i

and x0
i

are ini-

tialized at random. Then, the best solutions “pbest0
i ”

is decided.

Step:2 For all i, the ith particle updates “lbestt
i”.

Step:3 If the best “lbestt
i” is updated, the g(i)th sub-

swarm group communicates to the neighbor sub-

swarm groups and updates “glbestt
g(i)”

Step:4 For all i, the vectors vt
i
and xt

i
are updated by Eq.(1)

and (2).

Step:5 For all i, fitness of the ith particle are evaluated

by the objective function and ith particle updates

“pbestt
i”.

Step:6 Let t = t+ 1. Step 2 to 5 are repeated until t = tmax.

3. Deterministic PSON-D (D-PSON-D)

The search performances of PSO are affected by iner-

tia coefficient, acceleration coefficients and DIG. In addi-

tion to these parameters, in PSON-D, DBG also affects the

search performances. In order to analyze the search perfor-

mances of PSON-D, it is necessary to investigate the effects

of DIG and DBG. Since PSO uses random numbers, PSO

can be regarded as a stochastic system. These random fac-

tors influence the diversity of search. DIG and DBG also

influence the diversity of search. In order to investigate the

effects of DIG and DBG, we propose Deterministic PSON-

D (D-PSON-D) in which the random factors are removed

from PSON-D. That is, we apply PSON-D to the ideas of

deterministic PSOs[11],[12]. We investigate the search per-

formances by using the D-PSON-D.

In PSON-D, the random factors are uniform random

numbers from 0 to 1. The effect that the random factors

give acceleration coefficients can be regarded as average

0.5. Then, in D-PSON-D, the random factors are fixed to

0.5. Hence, Eq. (1) can be transformed to Eq. (3)

vt+1
i = wvt

i + 0.5c1(pbestt
i − xt

i) + 0.5c2(lbestt
i − xt

i)

+0.5c3(glbestt
g(i) − xt

i) (3)

Let gt
i
be the balance point of pbest, lbest and glbest.

gt
i =

c1pbestt
i + c2lbestt

i + c3glbestt
g(i)

c1 + c2 + c3

(4)

And, let φ be sum of all acceleration coefficients.

φ = c1 + c2 + c3 (5)

Using these, Eq. (3) can be transformed to Eq. (6).

vt+1
i = wvt

i + 0.5φ(gt
i − xt

i) (6)

We define yt
i
= xt

i
− gt

i
. Then, Eqs. (2) and (6) become the

following equations.

vt+1
i = wvt

i − 0.5φyt
i (7)

yt+1
i = wvt

i + (1 − 0.5φ)yt
i (8)

If v∞
i
= 0, particles converge to a target point g∞

i
. Other-

wise, particles diverge or oscillate.

Eqs. (7) and (8) can be transformed to matrix expression.
[

vt+1
i

yt+1
i

]

=

[

w −0.5φ

w 1 − 0.5φ

] [

vt
i

yt
i

]

= A

[

vt
i

yt
i

]

(9)

From Eq. (9), D-PSON-D can be regarded as a discrete

system. In order for D-PSON-D to become asymptotic sta-

bility, eigenvalues which satisfy |λE − A| = 0 need to be

inside of the unit circle in the complex plane. Eigenvalues

of matrix A are given by Eq. (10).

λ =
(w + 1 − 0.5φ) ±

√

(0.5φ − 1 − w)2 − 4w

2
(10)

Therefore, the conditions of asymptotic stability of D-

PSON-D are given by Eqs. (11) and (12).

0 < φ < 4w + 4 (11)

0 ≤ w < 1 (12)
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Table 1: Benchmark Functions
Function Name Range

Rastrigin′s f1(x) = 10D +

D
∑

i=1

(x2
i − 10cos(2πxi)) [−5.12, 5.12]

Rosenbrock′s f2(x) =

D−1
∑

i=1

(

100(xi+1 − x2
i ) + (1 − xi)

2
)

[−2.048, 2.048]

Table 2: The ratio of acceleration coefficients
No. c1 c2 c3

1 1 1/4 3/4

2 1 1/2 1/2

3 1 3/4 1/4

4 1/4 1 3/4

5 1/2 1 1/2

6 3/4 1 1/4

7 1/4 3/4 1

8 1/2 1/2 1

9 3/4 1/4 1

4. Numerical Experiment

In order to confirm the effect of each parameter, the nu-

merical experiments are performed. The parameters of ac-

celeration coefficients, DIG and DBG in D-PSON-D are

varied. Then, the search performances of D-PSON-D are

investigated.

4.1. Simulation Settings

Two benchmark functions with D = 10 shown in Table

1 are used in the experiments. In Table 1, f1 is multimodal

functions with numerous local minimum. f2 is unimodal

functions. The optimum solution of f1 is x = (0, 0, · · · , 0)

and that of f2 is x = (1, 1, · · · , 1). In each function, the

evaluation value of the optimum solution is “0”.

The total number of particles is “40”. Two variations of

groups are performed in the experiments. First, the number

of groups is “5” and the number of particles is “8”. Second,

the number of groups is “10” and the number of particles is

“4”.

4.2. Numerical experiment

The parameters of acceleration coefficients, DIG and

DBG are varied. It is known that “w = 0.729” and

“c1 = c2 = 1.49445” are good parameters to search

solutions[2]. Then, in the experiments, w is fixed to

“0.729” and the sum of acceleration coefficients are fixed

to “1.49445 + 1.49445 = 2.9889”. Also, based on the con-

ditions (11) and (12), in the D-PSON-D, one acceleration

coefficient is fixed to “1.49445” and the sum of the others

are fixed to “1.49445”. Table 2 shows the parameter sets for

the acceleration coefficients used in the experiments, where

each value is represented by the ratio to the parameter value

“1.49445”.

Table 3: The parameters of DBG and DIG

DBG DIG

5 groups 10 groups 8 particles 4 particles

1,2,4 1,2,4,9 1,2,4,7 1,2,3

Table 3 shows the parameters of DBG in each group and

DIG in each particle. The experiments are performed for

all combinations of these parameters shown in Tables 2 and

3.

Table 4 shows the experimental results of Rastrigin′s.

Table 5 shows the experimental results of Rosenbrock′s.

In Tables 4 and 5, “Average” represents the best results

in the combinations of DBG and DIG. “S mall” means

ring topology. In the case of “S mall”, a information can

be propagated slowly. “Big” means star topology or near

star topology in which a particle or sub-swarm group con-

nects more than 40% of the whole particles or sub-swarm

groups. In the case of “Big”, a information can be propa-

gated quickly. “Middle” means the intermediate topology

between “S mall” and “Big”.

Tables 4 and 5 show DIG from “S mall” to “Middle”

makes good search performances. By smaller DIG, the

ith particle propagates own information to few neighbors.

Then, the best information is propagated to all particles

slowly. Hence, each particle can search solution space

more diverse and find good solution, although convergence

speed is slow. While, larger DBG makes good search per-

formances. When the jth sub-swarm group traps into a lo-

cal minimum, the best solution information which is bet-

ter than “glbest j” is needed. Communicating with many

sub-swarm groups can increase the probability of updat-

ing “glbest”. Even if a sub-swarm group traps into a lo-

cal minimum, the sub-swarm group can escape from the

local minimum by communicating with many sub-swarm

groups. Moreover, these results show that trends of DBG

and DIG do not almost depend on acceleration coefficients.

It can be said that “S mall” and “Middle” DIG and “Big”

DBG can lead good search performances to PSON.

5. Conclusion

This paper has investigated the effect of parameters such

as acceleration coefficients, DIG and DBG in PSON-D. In

order to confirm the effect of these parameters, we have

proposed Deterministic PSON-D (D-PSON-D). The vari-

ous parameters are varied. Then, search performances of

D-PSON-D are evaluated. The simulation results show

that larger DBG and relatively smaller DIG can lead good

search performances. Moreover, the trends of DBG and

DIG do not almost depend on acceleration coefficients.

Future problems are followings: (1) D-PSON-D is ap-

plied to various benchmark functions, and (2) D-PSON-D

is compared with PSON-D which includes random factors.
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Table 4: The results for Rastrigin′s

5 groups and 8 particles
DBG DIG C1 C2 C3 Average

Big S mall 1/4 1 3/4 1.83E + 001

Big S mall 1/4 3/4 1 1.97E+001

Big S mall 1/2 1 1/2 2.18E+001

Big S mall 1 1/4 3/4 2.72E+001

Big Middle 1/2 1/2 1 2.28E+001

Big Middle 3/4 1/4 1 2.65E+001

Big Middle 1 1/2 1/2 2.89E+001

Big Middle 1 3/4 1/4 3.12E+001

Big Middle 3/4 1 1/4 3.84E+001

10 groups and 4 particles
DBG DIG C1 C2 C3 Average

Big S mall 1/4 3/4 1 1.99E + 001

Big S mall 1/4 1 3/4 2.19E+001

Big S mall 1/2 1/2 1 2.31E+001

Big S mall 1/2 1 1/2 2.87E+001

Big S mall 1 1/4 3/4 2.94E+001

Big S mall 1 1/2 1/2 3.20E+001

Big S mall 3/4 1 1/4 3.53E+001

Big S mall 1 3/4 1/4 3.87E+001

Big Middle 3/4 1/4 1 2.55E+001

Table 5: The results for Rosenbrock′s

5 groups and 8 particles
DBG DIG C1 C2 C3 Average

Big S mall 3/4 1 1/4 5.05E + 000

Big S mall 1/2 1 1/2 5.06E+000

Big S mall 1/4 1 3/4 6.51E+000

Big S mall 1 1/2 1/2 8.60E+000

Big Middle 1 3/4 1/4 5.43E+000

Big Middle 1/4 3/4 1 9.59E+000

Big Middle 1 1/4 3/4 1.69E+001

Big Big 1/2 1/2 1 1.58E+001

Big Big 3/4 1/4 1 2.03E+001

10 groups and 4 particles
DBG DIG C1 C2 C3 Average

Big S mall 1/2 1 1/2 4.41E + 000

Big S mall 1 3/4 1/4 4.42E+000

Big S mall 3/4 1 1/4 4.84E+000

Big S mall 1/4 1 3/4 5.95E+000

Big S mall 1 1/2 1/2 8.26E+000

Big S mall 1/4 3/4 1 8.79E+000

Big S mall 1/2 1/2 1 1.23E+001

Big Middle 1 1/4 3/4 1.47E+001

Big Middle 3/4 1/4 1 1.89E+001
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