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Up to now, a variety of vertical handover methods have 

been proposed [2,3]. In order to optimally utilize various kinds 
of different wireless networks with seamless switching among 
them, we are developing a new architecture called Cognitive 
Wireless Clouds (CWC) [4]. Since CWC includes various 
wireless systems managed by different owners or operators, 
centralized management methods cannot be applied. Therefore, 
we apply decentralize radio resource management method. 

Abstract—Various advanced wireless systems have been 
developed and commercialized in recent years. In order to 
utilize them efficiently by switching among different wireless 
networks without interruption of an on-going session, vertical 
handover technologies have been developed and standardized. 
Moreover, cognitive radio networking technologies that optimize 
radio resource usage of a limited frequency band become also an 
important issue now. In order to optimize radio resource usage, 
we propose an autonomous and decentralized radio resource 
selection algorithm based on the optimization dynamics of the 
mutually-connected neural networks. The proposed neural 
network maximizes the average throughput per terminal and 
minimizes the differences of the throughput among the 
terminals at same time by using the fourth-order energy 
function. We show that the radio resource usage could be 
optimized by the proposed method based on decentralized and 
autonomous computing. 

In this paper, we propose an optimization algorithm of 
radio resource usage in heterogeneous wireless network 
environment by autonomous decentralized decision making. 
In Ref. [5], we have already proposed an algorithm to 
maximize the average throughput per user, by using 
decentralized optimization dynamics of the mutually-
connected neural networks. However, the difference of the 
throughput assigned to each terminal becomes large in the 
previous method. For fair radio resource selection, when we 
introduce difference of the throughput into the objective 
function, it becomes fourth-order equation, which cannot be 
optimized by the conventional Hopfield neural network. In 
this paper, we introduce the high-order neural network [6], 
and realize a decentralized optimization algorithm for fair 
radio resource management. 

I. INTRODUCTION 
Various wireless systems have been developed and 

commercialized in recent years. The 2nd and 3rd generation 
cellular phone systems have been deployed world-wide and 
the fourth generation system is being developed now. 
Moreover, high-speed wireless systems for the short distance 
communications such as wireless LAN and Bluetooth have 
also been well deployed. WiMAX services are also going to 
be launched as a large area packet transmission system in a 
few years. The features of these wireless systems are different 
in various aspects, such as coverage area, transmission rate, 
communication cost and so on. In order to always use an 
appropriate wireless system in such heterogeneous wireless 
network environment, the vertical handover technologies, 
which enable switching of communication link without 
interruptions of the on-going session have been developed and 
standardized. Recently, available frequency band is getting 
narrower by deployment of many kinds of wireless systems. 
Therefore, the technologies to improve efficiency of frequency 
usage become very important [1]. 

II. OPTIMIZATION BY MUTUALLY-CONNECTED NEURAL 
NETWORKS  

The mutually-connected neural networks have been 
applied to various optimization problems. By distributed 
update of each neuron, the energy function decreases and 
converges [7]. The update equation of the neuron state is 
generally given by the following expressions, 
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where  is the state of ( i , )th neuron at time )(txij j t ,  is 
the connection weights between ( i , )th and ( , l )th neurons, 
and 

ijklW

j k

ijθ  is the threshold of the ( , )th neuron, respectively. i j

By autonomously updating the state of each neuron by Eq. 
(1), its energy function in Eq. (2) is minimized in the 
mutually-connected neural network. 
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When a minimum search problem is given and the objective 
function of the problem can be defined in the form of the 
energy function in Eq. (2), it can be solved by autonomous 
neural network update by Eq. (1) with the connection weights 
and the thresholds obtained by comparing objective function 
of the minimum search problem and the energy function in Eq. 
(2). 

 The optimization problem of radio resource management 
in Ref. [5] could be solved by this second-order energy 
function of the neuron state in Ref. [7]. However, in the 
algorithm which optimizes fairness, the objective function 
becomes fourth-order function which cannot be optimized by 
the conventional Hopfield neural networks. In this paper, we 
introduce the high-order neural network [6] to optimize 
fairness, by decentralized and autonomous dynamics. 

 When we introduce the third-order mutual connections for 
the neuronal update equation as follows, 
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where,  is the third-order connection weights among 
( i , )th, ( k , l )th, ( , )th and ( , )th neurons, and   is the 
second-order connection weights among  ( , )th, ( , )th 
and ( , n )th neurons, respectively. 

ijklmnopU

j m n o p
i j k l

m

III. AUTONOMOUS AND DECENTRALIZED RADIO 
RESOURCE SELECTION BY NEURAL NETWORKS  

A.  Mapping the problem on the neural network  
In order to apply the optimization dynamics of the 

mutually-connected neural networks to optimum access point 
selection, it is necessary to define relation between the output 
of the neural network and the state of wireless links. In this 
paper, each wireless link between a terminal and an access 
point is corresponded to each neuron. When the ( , )th 
neuron fires, terminal i  establishes a wireless link with the 
access point  , as shown in Fig. 1. 

i j

j

 

Figure 1.  Relation between firing pattern of the neural network and access 
selection. 

B. Total throughput maximization  
First we show how the average throughput could be 

maximized by load-balancing based on the mutually-
connected neural network dynamics [5]. Here, it is assumed 
that the terminal can connect with all the access points, and 
that the terminals connected with the same access point share 
the throughputs equally among them. One terminal can 
connect only with one access point. The available throughput 
for the terminal i  at time t , ,can be defined as follows, )(tTi
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neuron state as shown in Eq. (4), which decreases by 
updating using Eq. (3). 

where  is the capacity(total throughput) of the access point 
,   is the number of terminals connected with access point 
, and  is the access point which the terminal i  is 
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connecting, respectively. From Eq. (5), objective function to 
optimize the total throughput is given by, 

The reciprocal of Eq. (10) can be transformed to a function of 
the neuron state, , as follows, )(txij
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In order to apply the Hopfield neural network to optimization 
of this problem, the state of the neuron  has to come to 
the numerator. Therefore, the problem is replaced to the 
reciprocal of Eq. (6), and the maximization problem was 
modified to a minimization problem. Then, the energy 
function to optimize throughput can be defined as follows, 
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From Eqs. (2) and (7), the connection weights between 
neurons can be obtained as follows, 

 
⎪
⎩

⎪
⎨

⎧ =−
=

otherwise0

1 ljfor
CW jijkl

.

 (8) 

Using this connection weights, the average throughput per 
terminal can be maximized. 

C. Fair radio resource optimization  
By throughput maximization method in Sec. 3.2, the 

terminals can select the appropriate access point 
autonomously. However, since it only optimizes the total 
throughput, its results sometimes become unfair among the 
terminals. Then, we propose the method of minimizing the 
difference of the throughput of each terminal in addition to 
optimization of the total throughput. 

If the reciprocal of Eq. (5) is taken as well as Sec.3.2, the 
energy function can be defined as follows to minimize the 
difference of the throughput among terminals,  
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However, in Eq. (9), the difference of large improvement of 
the throughput becomes small. It consequently becomes 
difficult to optimize the throughput maximization and 
difference minimization at the same time. In order to make it 
easier for neurons corresponding to big improvement to fire, 
we introduce , as follows by taking inverse of capacity, )(tRi
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Using , the energy function to optimize fairness of the 
throughput can be defined as follows, 
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From Eqs. (11) and (12), the energy function can be obtained 
as a function of the neuron states, as follows, 
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By comparing Eqs. (13) and (4) with avoiding the self 
feedback connections, the connection weights, , , 

, and threshold 
ijklmnopU ijklmnV

ijklW ijθ  can be obtained as follows, 
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where,  is the Kronecker delta.                                                        ijδ
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In order to maximize throughput and optimize fairness at the 
same time, the final energy function is defined as follows, 
from Eqs. (7) and (13). 

 , (18) 21 EBAEE ′+=

where A  and B  are the parameters which are the weights of 
each energy function. 

IV. SIMULATION RESULTS  
First of all, the average and variance of the throughput are 

shown in Fig. 2.  In this experiment, the number of terminals 
and access points are four, respectively. The parameter A  is 
fixed at 100, and B  is varied. The total capacities of each 
access point are 2, 10, 10, and 18 Mbps, respectively.  

 

Figure 2.  Average and variance of the throughput of the proposal method 
with 100=A . 

From Fig. 2, variance is large when B  is small. On the other 
hand, variance becomes smaller as the value of B  grows. In 
this experiment, the average of the throughput and the 
variance of the throughput become appropriate value by 
introduced the term of fairness, . ′

2E

Figs. 3 and 4 show the average and variance of the 
throughput when the number of access points was fixed and 
the number of terminals was changed. The total capacity of 
each access point is 2, 2, 10, 10, 10, 10, 18, 18, 24 and 24 
Mbps, respectively. Each plot in Figs.3 and 4 is mean value 
with 500 different initial conditions. 

  

Figure 3.  Comparison of average throughput. 

From Fig. 4 when the fairness was considered, the 
variance of the throughput becomes less than a half compared 
to the result without considering fairness. On the other hand, 
from Fig. 3, the average of throughput decreases totally about 
10%. From these results, the effectiveness of the proposal 
method was verified. 

 

Figure 4.   Comparison of variance. 

V. CONCLUSION  
In this paper, autonomous and decentralized access point 

selection that optimizes fairness was proposed by using 
higher-order neural networks which minimize difference of 
the available throughputs among the terminals. We confirmed 
the effectiveness of the proposed approach by computer 
simulation. Our algorithm can be distributed either into the 
terminals or into the network side entities. As a future work, 
we are going to evaluate this approach on a real experimental 
network with two or more wireless access points based on this 
simulation result. Although the higher-order neural network 
requires heavy computational amount, our algorithm runs on a 
large number of the terminals or the network entities, on each 
of which computational load is distributed. 
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