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Abstract—Making a design of experiments is very im-

portant especially in considering multivariate analyses for

ultra large scale systems. It is because that it is too hard

to obtain whole or enough analysis data from such systems

which have exponentially large parameter space. Thus, a

design of experiments which makes it possible to analyze

such systems is required. In this paper, a novel framework

to dynamically obtain appropriate analysis data sets is pro-

posed. In the framework, an evolutionary algorithm (EA)

works so as to optimize analysis results. The results are ob-

tained by analyzing a part of whole data sets. Such sub data

set is treated as individuals of EAs. Numerical experiments

are performed to make sure that the proposed framework is

available to generate appropriate analysis data sets.

1. Introduction

There are many ways to optimize and analyze unknown

systems even if the problems are NP–hard. In a context of

optimization, for example, evolutionary computations get

much attentions because the algorithms are able to mini-

mize or maximize the system outputs and we usually can

obtain enough better solutions without evaluating whole

system outputs. On the other hand, in a context of anal-

ysis, we still have many trial and errors to obtain an insight

about the systems. Via analyzing systems, we usually try

to find three things, how many factors and what factors are

in the system and how the factors affect the system outputs.

To achieve to gets such insights, we have to obtain enough

data sets of system inputs and outputs. And the number of

data sets easily get larger as the number of system model

parameters are increasing. Nowadays, we believe that such

data is called big data even if the data sets are obtained by

numerical experiments using computers.

It may be possible to analyze ultra large systems with

fewer number of system input–output sets only when a de-

gree of freedom of analysis models is less than or equal to

the number of factors n. The ideas have been studied in

space modeling. For example, in finding brain areas pre-

dictive about brain states based on fMRI data, billions of

neural activity are described by several factors[2]. Thus,

it is required to estimate the number of factors and what

factors are from such big data.

The goal of this study is to develop a design of exper-

iments to estimate factors of systems with fewer number

of analysis data sets obtained by executing numerical sim-

ulations about the systems. A typical design of experi-

ments, for example, is analysis of variance to find factors of

systems[1]. Applying analysis of variance to data sets, we

can estimate factors though candidates of factors are given

before analyzing the data sets. Additionally, using orthog-

onal arrays makes it is possible to reduce the number of

experiments O(n) from O(nn). However, n as the number

of candidates of factors is still large in considering ultra

large scale systems .

In this paper, an analysis that simulation results are clas-

sified into two classes. In the analysis, data sets are de-

scribed by a system input as real numbers vector and a sys-

tem output as classes. The number of factors is given before

analyzing but what factors are is going to be estimated. The

patten classifier as the analysis learns a training data sets

as system outputs. Then, a novel framework as a design

of experiments works to obtain appropriate sub data sets.

In the framework, evolutionary computation techniques are

applied to dynamically obtain such sub data sets. So, the

proposed framework is called Evolutionary Design of Ex-

periments in sort EDoEs here. The availability of proposed

framework is discussed via several numerical experiments.

2. Definition of Evolutionary Design of Experiments

In this section, a definition of EDoEs is described. In

EDoEs, there are three components, Simulator, Analyzer

and Evolutionary algorithm (in short EA). Simulator is

given but is treated as an non–linear function. There are

several kinds of Analyzer as multi–variable analyses, e.g.

regression analysis, analysis of variance, machine learning,

data mining and so on. Analyzer has common features to

estimate the number of factors and estimate how factors af-

fect the perspectives. EA optimizes the result of Analyzer

for the output data sets of Simulator. For example, in con-

sidering neural network (in short NN) as an Analyzer learn-

ing classification of simulation outputs, a fitness function

is defined as the rate of classification.

There are two goals of EDoEs, one is to obtain fewer

appropriate data sets and another is to optimize results of

analyses. In other words, enough data sets can be obtained

but whole data sets can not be obtained. To obtain such

data set, there are following steps in EDoEs. In the first

step, initial simulation parameters are generated at random.

In the second step, Simulator makes the simulation outputs.

In the third step, the result of an Analyzer is obtained. In
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the forth step, a new set of simulation parameters are gen-

erated by EA. After the forth step, steps from the second to

the forth are repeated by conditions about the result of the

Analyzer are satisfied.

3. Numerical Experiment

In this section, numerical experiments are shown to esti-

mate availability of EDoEs. Results of NN as an Analyzer

using data sets obtained by EDoEs are compared with data

sets which are generated randomly or uniformly. In the

following paragraphs, Simulator, Analyzer and EA in nu-

merical experiments are defined.

3.1. Definition of Simulator

A function FS(·) as Simulation is defined by

FS(x) =















label1 (x ∈ S)

label2 (x < S)
(1)

where x is a real vector ([x1, x2, . . . , xd, . . . , xD]T ) and S is

a sub set of RD. Then, S is defined in table 1.

Table 1: A list of Simulator. Names of Simulator and re-

gion of S are shown. a, b, c and d are constant values.
Test name S

XOR XOR(
∑

x2d−1 > 0,
∑

x2d > 0)

SingleRectangle a < xd < b

DoubleRectangle OR(a < xd < b, c < x′
d
< d) s.t. b < c

HyperCone
∑

ad xd < b and xd > c

3.2. Definition of NN as an Analyzer

An usage to classify data set into several groups by using

NN is popular in the field of machine learning. NN can lean

patterns from a training data set and classify new inputs.

Applying a state of the art NN in EDoEs may be success-

ful, but studies to improve EDoEs is beyond the goal of this

paper which makes sure the availability of EDoEs. There-

fore, a single-hidden-layer NN introduced by Venables et.

al.[3] is applied as Analyzer here.

An example of patten classification using NN for XOR.

Here, the number of training data is one hundred or more

but the number of factors n is equal to two. An input x1 =

−2 and x2 = 2 is classified to label2. A comparison training

data set is obtained at random from uniform distribution

(U[−3, 3]) and another training data set is distributed in a

uniform grid pattern. (See figure 1.) Nodes in NN is defined

as a sigmoid function and NN outputs a scalar value 0 <

yi < 1 with an input x. label1 is associated with output y is

larger than 0.5 and label2 is associated with y is less than

0.5. Both the number of nodes in a middle hidden layer (Ni)

and network weights are tuned by R package “caret”[4].

It means that the number of Ni may be different in each

training data set.

Figure 1: Examples of pattern classification learning for

XOR test function. label1 is described as a mark of rect-

angle and label2 is described as a mark of circle. Level

curves of NN as a probability density function are drown.

In the left figure, a pattern classifier for grid pattern data

points is shown and in the right figure, a pattern classifier

for random pattern data points is shown.
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3.3. Definition of EA

EA works so as to optimize the results of Analyzer in the

proposed framework. It means that EA finds candidates of

training data set so as NN can learn appropriate patterns.

Here it is assumed that EA keeps balance between find-

ing borders between labels and covering parameter space

widely. Actually the result of NN shown in the left of figure

2 seems better than the result via randomly sampled train-

ing data sets. But NN can not classify correctly in some

areas far from the border. It is because that training data

is only concentrated nearby the border. On the other hand,

the result shown in the right of figure 2 seems not worse

than the grid pattern even if the number of training data is

less than the grid pattern. Thus, EA should find training

data set not only around the border but also covering result

space widely.

Figure 2: Results of pattern classification for XOR test

function with fewer data points. The left figure shows the

results of NN with data points nearby borders. And the

right figure shows that results of NN with data points not

only nearby borders and also a few additional points far

from border. The result in the right figure is better than the

left.
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In considering to find new candidates of training data,

it is required to mainly search around borders and also to
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obtain widely distributed data points for each label. Thus,

from the context of genetic algorithm (GA), methods of

crossover with selection and mutation are employed to gen-

erate a new set of candidates from evaluated training data

sets. The crossover tries to find new training data so as to

obtain data which are placed near by borders. The selection

tries to select better candidates from found training data

sets via crossover. The mutation tries to find new training

data so as to obtain data which are placed far from borders.

To generate training data points around borders (it calls

border points), a data sampling method inspired from

crossover in GA is proposed. In considering border points

are distributed between a label1 point and a label2 point.

So, a new candidate of border points is generated by a fol-

lowing equation.

|xnew − xlabel1| = |xnew − xlabel2| (2)

where xnew is a new candidate of border points, xlabel1 is

a randomly selected point from training data points which

belong to S test and xlabel2 is a randomly selected point from

training data points which do not belong to S test.

To obtain better border points, the selection inspired

from natural selection in genetic algorithm is applied. In

genetic algorithm, each individual is evaluated by an eval-

uation function. So, an evaluation function to find such

training points is defined as following equations.

Maximize f itness (3)

f itness = |0.5 − FNN(x)|, (0 < FNN(x) < 1)

where x is a new data point and FNN(x) is estimated prob-

ability density function as NN. In the evaluation function,

data points which are placed in borders estimated by NN

can get larger f itness. Generated border points are selected

based on fitness. Here, a selection randomly selected from

top 50% generated points is applied.

To generate training data points far fromborder points,

a sampling method inspired from mutation in GA is pro-

posed. a new candidate of training data is randomly sam-

pled from U[−3, 3].

Processes to obtain a training data set by using EA is

shown in following steps.

• Initial training data points are generated.

• NN learns whole generated data points.

• Additional data sets are found by EA.

– New candidates of data sets are generated via

crossover and mutation.

– Generated data sets are evaluated by the evalua-

tion function.

– Output N data points randomly selected from top

of 50% points based on fitness.

• The additional points generated by EA are added into

training data set.

• The above three steps are repeated until termination.

4. Numerical Experiments

In this section, numerical experiments are shown in order

to make suer that the proposed framework is available to

generate appropriate training data sets with fewer number

of data points. Common settings for numerical experiments

are defined as the following table.

Table 2: A list of Simulator: names of Simulator and re-

gions S are shown.
settings 2 dim.

# of final training data points (Nmax) 100

# of EA iteration 10

# of generated data points by EA (N) 10

crossover sampling border points

crossover rate (Nc) 8 over N

mutation sampling from U[-3, 3]

mutation rate (Nm) 2 over N

Fig. 3 shows examples of the data points in final iteration

each test, XOR(top left), SingleRectangle(top right), Dou-

bleRectangle(bottom left) and HyperCone(bottom right)

respectively. It seems that training data concentrates

around the border points in each S . Fig. 4 shows ex-

amples of pattern classification from randomly sampled

data points for each test, XOR(top left), SingleRectan-

gle(top right), DoubleRectangle(bottom left) and Hyper-

Cone(bottom right) respectively. Fig.5 shows iteration–

Figure 3: Results of pattern classification via proposed

framework for each test, XOR(top left), SingleRectan-

gle(top right), DoubleRectangle(bottom left) and Hyper-

Cone(bottom right) in final iteration.
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rate plots of NN for each test, XOR(top left), SingleRect-

angle(top right), DoubleRectangle(bottom left) and Hyper-

Cone(bottom right). Solid five lines represent transition of
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Figure 4: Results of pattern classification from ran-

domly sampled training data, XOR(top left), SingleRect-

angle(top right), DoubleRectangle(bottom left) and Hyper-

Cone(bottom right) in final iteration.
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the rates of answered correctly in proposed method. On

the other hand, dashed five lines represent transition of the

rates of answered correctly in sampling randomly from U[-

3, 3]. Rates of NN answered correctly increase as the num-

ber of training get large.

Figure 5: Plots of iteration–rate of NN for each test,

XOR(top left), SingleRectangle(top right), DoubleRectan-

gle(bottom left) and HyperCone(bottom right) in final it-

eration. Five solid lines represent the rate transitions with

training data obtained by proposed method and five dashed

lines represents the rate transition with randomly sampled

data.

5. Discussion

It seems that training data obtained by EDoEs concen-

trates around the border between labels in each test. So

EDoEs can keep balance between finding border points and

finding widely spreading points. This may implies that it

is possible to obtain a enough number of boder points via

EDoEs in high dimensional problem.

The rates of answered correctly via EDoEs are not differ-

ent from via randomly sampled data. This is because that

the number of dimension of parameter space is only two.

It seems that we may find differences in high dimension

parameter spaces.

6. Conclusion

In this paper, a novel framework to dynamically obtain

an appropriate analysis data sets via numerical simulations.

The proposed framework is defined by three components

Simulator as a no linear function, Analyzer as a multivari-

ate analysis and EA as design of experiments to optimize

the result of the Analyzer. In order to make sure the avail-

ability of the proposed framework, numerical experiments

are performed. From the results of experiments, it is shown

that it is possible to obtain some appropriate data sets by

using the proposed framework.

Making sure that availability of the proposed framework

for high dimensional Simulator will be expected. Moreover

The NN which is used in the experiments is a general neural

network. Applying online learning[5] as an Analyzer and

effective training data generation in EA are under consider-

ation to reduce the calculation cost to obtain training data

set.
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