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Abstract– The path-integral quantum Monte Carlo 

(PIQMC) method is widely used as a classical simulation 

algorithm for quantum annealing. In this method, replicas 

represent different points in imaginary time. We propose 

and demonstrate a temperature-control-free simulated 

annealing algorithm inspired by the PIQMC method. 

Replicas help each other in a swarm-like manner to search 

for the ground state. We solve 100 max-cut problems for 

algorithm evaluation, each of which corresponds to a 

graph of 100 vertices. We also solve the same problems 

using a conventional method based on the Metropolis 

algorithm for comparison. 

 

1. Introduction 

 

In physics-inspired computation, metaheuristic 

algorithms reflecting the laws and principles of physics 

are developed. The earliest, and still well-known, 

algorithm is the so-called Metropolis algorithm [1]. The 

annealing process in material science based on classical 

thermo-dynamics is simulated. Quantum annealing (also 

known as adiabatic quantum computation) is its quantum 

version [2], which was demonstrated using 

superconducting flux qubits [3]. The path-integral 

quantum Monte Carlo (PIQMC) method is a classical 

algorithm for simulating quantum annealing. Its 

superiority over conventional methods has been reported 

for many optimization problems [4-5]. We anticipate that 

more insight into the PIQMC method will lead to the 

creation of novel unique quantum-inspired algorithms. 

We propose and demonstrate PIQMC-based simulated 

annealing, in which replicas representing different points 

in imaginary time act cooperatively like a swarm for 

ground-state searching. Their interactions are local, simple 

and fluctuate to a certain degree. Such fluctuations are 

necessary to escape local minima. However, we do not 

need explicit control of the fluctuations, making our 

annealing temperature-control-free. 

The rest of the paper proceeds as follows. Section 2 

provides an explanation of the PIQMC method and our 

temperature-control-free algorithm. The main results and a 

discussion are given in Sections 3 and 4, respectively. We 

solve 100 max-cut problems for algorithm evaluation, 

each of which corresponds to a graph of 100 vertices. 

 

 

2. Proposed simulated annealing 

 

2.1. PIQMC method 

 

The PIQMC Hamiltonian with K replicas is denoted by 

[4] 
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For a spin at the i site of the k-th replica, 𝜎𝑖
𝑘 = ±1 and 

𝜎𝑖
1 = 𝜎𝑖

𝐾+1 . Replicas have the same objective function 

given by the following N-spin Ising model: 
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Our purpose is to find the ground state. Eq. (2) is the 

interaction energy expressing replica-replica interactions. 

Since 𝑊(𝑡) ≥ 0  is a time-dependent monotonically 

increasing function, Eq. (2) induces replica states to 

become identical or nearly identical as annealing 

proceeds, although their interactions are limited to nearest 

neighbors. This is analogous to local interactions leading 

individuals (replicas in our case) to form a swarm and to 

move in the same direction as their neighbors without a 

leader’s instruction. 

To make our annealing temperature-control-free, we do 

not use 𝑊(𝑡) in our annealing process. Thus, we cannot 

precisely mimic the PIQMC method. However, we can 

still use the essential features of Eq. (2) to implement 

replica-replica interactions. In the Metropolis algorithm, 

each replica separately and independently receives 

thermal noise in the form of classical artificial fluctuations 

in order to escape local minima; thus, the searching ability 

of the algorithm depends on how suitable the temperature 

control is. This case is therefore as if one replica plays a 

leading role, determining the temperature control and 

sending instructions to the other replicas. It is interesting 

to compare annealing methods with and without swarm-

like replica-replica interactions. 
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2.2. Two-party rule 

 

We assume that Alice and Bob possess 𝜎𝑖
𝑘  and 𝜎𝑖

𝑘+1 , 

respectively. When their spins are parallel, the 

product  −𝜎𝑖
𝑘𝜎𝑖

𝑘+1  in Eq. (2) becomes negative. This 

negative value contributes to lowering the interaction 

energy; thereby, Alice and Bob leave their states 

unchanged. On the other hand, when their spins are 

antiparallel, Bob tosses a coin and randomly but evenly 

chooses his state from 𝜎𝑖
𝑘+1 = ±1. Coin tossing creates 

fluctuations, which work as a driving force to help 

replicas escape local minima. Table 1 summarizes our 

two-party rule. Since the chance of encountering 

antiparallel spins becomes small if annealing goes well 

and considering that such antiparallel spins determine the 

frequency of Bob’s coin tossing, fluctuations gradually 

and automatically diminish as annealing proceeds. In this 

case, we do not need to explicitly control the fluctuations. 

 

Table 1 Two-party rule 

Input Output 

Alice (𝜎𝑖
𝑘) Bob (𝜎𝑖

𝑘+1) Bob (𝜎𝑖
𝑘+1) 

±1 ±1 ±1 

±1 ∓1 Coin toss 

 

2.3. Annealing algorithm 

 

Algorithm 1: Two-party rule 

1: for each run do 

2:   initialize to random initial state 

3:   for each renewal do (𝑛1 times) 

4:     for each replica do 

5:       for each spin do 

6:        propose a flip 

7:        calculate energy increase ∆𝐸 after the flip 

8:        if  ∆𝐸 ≤ 0, then accept spin flip 

9:       end for 

10:   end for 

11:   for each replica do 

12:     for each spin do 

13:      if 𝜎𝑖
𝑘 ≠ 𝜎𝑖

𝑘+1 then 𝜎𝑖
𝑘+1 = ±1 randomly & evenly 

14:     end for 

15:   end for 

16:  end for 

17:  for each renewal do (𝑛2 times) 

18:    for each replica do 

19:      for each spin do 

20:       propose a flip 

21:       calculate energy increase ∆𝐸 after the flip 

22:       if  ∆𝐸 ≤ 0, accept spin flip 

23:      end for 

24:   end for 

25:  end for 

26: end for 

 

To make our annealing temperature-control-free, we do 

not explicitly use 𝑊(𝑡) in our algorithm (Algorithm 1), 

where each replica is cooled separately and independently 

using the Metropolis method with zero temperature (see 

lines 3-10). Replica-replica interactions based on Table 1 

are implemented in line 11 to line 15. We repeat cooling 

and replica-replica interactions alternately 𝑛1  times (line 

3) and continue cooling alone another 𝑛2 times (line 17). 

We compare our algorithm with the temperature-

controlled Metropolis method (see Algorithm 2) and 

examining their success probabilities. Here, the success 

probability is defined as follows. 
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Algorithm 2: Metropolis method 

1: for each run do 

2:   initialize to random initial state 

3. set an initial temperature  𝑇(𝑡 = 0) 

4:   for each renewal do (𝑛3 times) 

5:     for each replica do 

6:       for each spin do 

7:        propose a flip 

8:        calculate energy increase ∆𝐸 after the flip 

9:        if  ∆𝐸 ≤ 0, accept spin flip 

10:        else if exp(− ∆𝐸 𝑇(𝑡)⁄ ) > random [0,1] 
11:        then accept spin flip 

12:     end for 

13:    end for 

14:    𝑡 = 𝑡 + 1 

15:  end for 

16: end for 

 

For each replica, we renew the spin states 𝑛3  times 

(line 4). In line 8, we calculate the energy difference ∆𝐸 

before and after spin flipping. In line 10, random 
[0,1] generates a uniform random number between zero 

and unity, yielding thermal-noise-based fluctuations. 

Since its searching ability depends on the suitability of the 

temperature control, we need an optimized temperature 

function 𝑇(𝑡). 

 

3. Numerical demonstration 

 

3.1. Max-cut problem 

 

Let V and E be the sets of vertices and edges, 

respectively, that form an undirected graph. Max-cut 

problems determine a subset S which maximizes the sum 

of the weights 𝑤𝑖𝑗  (= 𝑤𝑗𝑖 ) of the edges crossing S to its 

compliment 𝑉 ∖ 𝑆 . Setting 𝑤𝑖𝑗 = 0  for (𝑖, 𝑗) ∉ 𝐸 , the 

objective function to be maximized is given by  
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Here, 𝜎𝑖 = +1 for 𝑖 ∈ 𝑆 and 𝜎𝑖 = −1 for 𝑖 ∈ 𝑉 ∖ 𝑆. Since 

the first summation on the right-hand side of Eq. (5) is 

constant, minimizing the second summation is crucial; 

therefore, our goal is to find the ground state of Eq. (3) at 

𝐽𝑖𝑗 = −𝑤𝑖𝑗 . We prepare 100 such problems by randomly 

but evenly choosing 𝑤𝑖𝑗 = 0,1  for 𝑖 ≠ 𝑗  for algorithm 

evaluation. We set the problem size as N = 100, which 

corresponds to a graph with 100 vertices. 

 

3.2. Success probability 

 

Setting 𝑛1 = 1900 and 𝑛2 = 100 for Algorithm 1 and 

𝑛3 = 2000  for Algorithm 2, we compare their success 

probabilities under the condition that 𝑛1 + 𝑛2 = 𝑛3 . For 

Algorithm 2, we use the temperature function 

( ) ( )1T t T t+ = .       (6) 

Here, we set the parameter  and the initial temperature 

𝑇(0) as 0.9999 and 10, respectively. We solve 100 max-

cut problems with the number of replicas set to K = 100. 

Fig. 1(a) shows the mean success probabilities (100 

problems = 100 results), each of which is obtained by 

solving the same problem 10 times. Fig. 1(b) shows the 

raw success probabilities (100 problems ×  10 times = 

1000 results). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Results of 100 max-cut problems. 

(a) Mean success probability (100 results) 

(b) Raw success probability (1000 results) 

 

In Fig. 1(a), the chance that Algorithm 1 presents a 

higher or equal success probability is 49%. In Fig. 1(b), it 

becomes 51.5%; thus, both algorithms have similar 

searching abilities. However, a better choice of 𝑇(𝑡) may 

improve the performance of Algorithm 2, although finding 

such a 𝑇(𝑡)  is a time-consuming task. It is natural to 

consider that the difference in success probabilities 

obtained for the same problem originates from the 

different search routes given by the different methods, 

which yield different fluctuations. In Fig. 1(b), one- or 

zero-value results were obtained from Algorithm 1 (see 

red and blue solid circles). This is a sign that replica-

replica interactions based on Table 1 induce replicas to 

form a swarm. If all replicas reach the ground state, the 

success probability becomes unity. On the other hand, if 

they are trapped at nearby states, it becomes zero. This 

swarm-like movement is emphasized by decreasing the 

number of replicas K. For example, Fig. 2 was obtained 

from Algorithm 1 when K = 25, 50 and 100. Here, we 

again solved 100 max-cut problems 10 times for each 

case. Although results are not shown, we always observed 

a single swarm when K = 10. On the other hand, no such 

grouping occurred when using Algorithm 2. We will 

discuss the relation between the number of replicas K and 

swarm formation in the next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Success probability (Algorithm 1). 

 K = 25 (red), 50 (blue) and 100 (black) 

 

4. Discussion 

 

4.1. Number of replicas K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 K-dependent success probability. 
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Fig. 3 gives an example of the K-dependent success 

probability. We solve the same problem 30 times; thereby, 

the number of results plotted for each K is 30 and each bar 

represents their mean value. At K = 10 and 20, we always 

observed one- or zero-value results. For instance, a mean 

success probability of 60% obtained at K = 20 means that 

all 20 replicas form a single swarm that settles into the 

ground state 18 out of 30 times. In this case, Table 1 

surely works as swarm-like replica-replica interactions to 

induce replica states to become identical as annealing 

proceeds. For K < 50, a single swarm was formed with 

high probability whereas multiple swarms were observed 

for K > 50, which suggests that replica-replica interactions 

based on Table 1 are not strong enough to form such a 

large swarm. In this case, some replicas collectively reach 

the ground state, while others stay in states near the 

ground state (the second or third lowest state in most 

cases). Of course, the swarm size strongly depends on 

Bob’s coin tossing; therefore, we have a nonzero chance 

that all replicas form a single swarm even when K exceeds 

50. 

 

4.2. Limitations 

 

We confirmed that swarm-like replica-replica 

interactions based on Table 1 induce replicas to 

collectively and cooperatively search for the ground state 

as annealing proceeds. However, Algorithm 1 forces Bob 

to stop tossing a coin once all replicas fall into the same 

state, no matter what this state is. If all replicas are 

trapped and frozen at some nearby state before ever 

reaching the ground state, there is no driving force to 

escape this local minimum since no further fluctuations 

are created. In this case, we have to restart the algorithm 

with new random initial states. The timing of freezing 

strongly depends on Bob’s coin-tossing results. However, 

if a relatively large number of replicas is chosen (K = 100, 

for example), the chance that all replicas have the same 

state becomes small, and we can avoid this type of forced 

stop. 

Meanwhile, swarm-like formation never occurs in 

Algorithm 2 since each replica acts separately and 

independently while receiving thermal-noise-induced 

fluctuations. The success probability in this case depends 

on the suitability of the temperature control. Of course, we 

also have a small but nonzero chance that all replicas 

reach the ground state by chance. 

 

5. Conclusions 

 

We proposed and demonstrated a PIQMC-based 

simulated annealing method for temperature-control-free 

annealing. Replicas help each other to search for the 

ground state of an Ising model in a manner similar to a 

swarm (or multiple swarms in the case of large K values) 

acting cooperatively. Their interactions are local, simple 

and fluctuate to a certain degree. Our two-party rule 

solved 100 max-cut problems, each of which corresponds 

to a graph of 100 vertices (a 100-spin Ising model). The 

same problems were also solved using the Metropolis 

algorithm, whose searching ability depends on the 

suitability of the temperature control. It turns out that the 

two algorithms tend to have similar search abilities. 

However, different success probabilities were obtained for 

the same problem; therefore, the algorithms may 

complement each other in improving the accuracy of 

ground-state searching. 

For cooling replicas, our simulated annealing used the 

Metropolis method with zero temperature. Of course, this 

cooling method can be replaced with other (possibly more 

efficient) cooling algorithms (for example, the r-fractional 

update algorithm that was initially developed for the 

parallel simulation of the Hopfield neural network model 

[6]). Although replica-replica interactions were quite 

simple, and interactions were limited to between nearest 

neighbors, it may be interesting to modify such 

interactions if we can increase the success probability. 

In the present work, we solved only 100 max-cut 

problems. The number of vertices (spins) were limited to 

100 due to the performance limit of our PC. We will 

upgrade our PC performance and investigate a variety of 

max-cut problems to more precisely evaluate our method. 
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