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Abstract—This paper describes a machine learn-
ing of a data-mining cellular neural network (CNN)
from analysis of covariance structure using Back Eu-
ler method. It is the implicit method which is the
most practical method for solving stiff systems. At
each learning iteration step for quasi-Newton method,
the Hessian matrix approximation for the matrix in-
cluding second-order partial derivatives is updated by
using Davidon-Fletcher-Powell (DFP) method. By us-
ing both of Back Euler method and DFP method,
the solution for stiff systems in the parameter space
can be obtained. That is, our purpose is to deter-
mine the weight parameters θ in the connection ma-
trices A, B, C, D,T and e by the machine learning
method for equilibrium points of the CNN states equa-
tion ẋ = 0. The structure of the data-mining CNN is
considered from viewpoints of circuit modeling.

1. Introduction

Recently, neural machine learning methods have
been used as data mining to acquire the important
information from massive amount of data and to pre-
dict future. That is, the data mining is to find ’rule’
as classification, prediction, I/O mapping and associ-
ation by using machine learning algorithm. However,
the CNN learning methods have not been proposed
sufficiently.
We propose a cellular analysis of covariance struc-
ture to predict the meaningful information including
continuous data. The circuit model is called a data-
mining CNN. In this paper, Backward Euler method,
one of methods for solving a nonlinear differential
equation, is used in parameter space. The impor-
tant point is that this method can solve stiff systems
which have large difference among eigenvalues. The
resulted parameters are used as weights on edges in
the cellular signal flow graph (SFG) which works as a
circuit model with V-I transformation devices and a
prediction model for unknown input data. Our sim-
ulation for the model of ”Purchase of a Car” shows
good result. This machine learning algorithm will be
in SDP(Sophia Dynamics Program) which has been
used as nonlinear circuit program with Fast Automatic
Differentiation. Also, the structure of the data-mining

CNN is considered from circuit modeling viewpoints
and from Chua’s theorems[1].

2. State and Measurement Equations

The observed variable y is a visible information data
which has been obtained from real human behavior,
natural environment and so on. The average µ and the
real covariance matrix S = E((y−µ)(y−µ)′) ∈ Rl×l

is calculated by using the observed variable y.
Let x ∈ Rn and u ∈ Rm be the inner and outer

state variable vectors with input-branches and without
input-branches respectively, then the cellular struc-
tural equation is expressed by

ẋ = −x + Af(x) + Bu + T (1)

where A ∈ Rn×n and B ∈ Rn×m are coefficient
weight matrices which express connections between
the state variables, and T ∈ Rn is the error vector
for the state variables. Each nonlinear function of
f(x) ∈ Rn is a piece-wise linear function.

The cellular measurement equation should be used
to express the cause and result relations between the
observed variables y ∈ Rl and the state variables x,
u. The measurement equation is given by

y = µ + Cf(x) + Du + e (2)

where C ∈ Rl×n and D ∈ Rl×m are coefficient weight
matrices which express connections between the state
variables x,u and the observed variables y for its av-
erage µ for y, and e ∈ Rl is the error variables for the
observed variables.

For example,each i-th row vector of the matrix A
includes a weight element wij on the edge from a cell
Cj to Ci. Generally, all matrices are sparse.

In this paper, our purpose is to determine the pa-
rameters of A, B,C, D, T and e by machine learning
method for equilibrium points of the CNN states equa-
tion ẋ = 0 from viewpoints of circuit modeling.
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3. Optimization

3.1. Fit Function

Let z be the model standardized vector, then it is
given by

z = y − µ, (3)

then,the CNN state equation can be changed to struc-
tural and measurement equations in equilibrium point
as follows: (

z
x

)
=

(
0 C
0 A

)(
z

f(x)

)
+

(
I 0 D
0 I B

) 


e
T
u


 (4)

In the case that a connection in the data-mining
CNN is not symmetrical, we must determine it such
that if aij 6= 0,then we set aji = 0 without any loop for
its equilibrium. And if aii = 0, it seems that each state
variable is in the equilibrium point of linear region as
|x| ≤ 1 to becomef(x) = x. This will be proved later.
In the linear region, if we define as

E =
(

I 0
)

A0 =

(
I −

(
0 C
0 A

))−1

B0 =
(

I 0 D
0 I B

)

it is derived that

z = EA0B0




e
T
u


 . (5)

where (e, T , u)′ is an outer vector with no input-
branches.
Let Σ ∈ Rl×l be the covariance matrix E(zz′) for
(5), then it is derived theoretically from the cellular
structural and measurement equations as follow:

Σ = EA0B0Φ0B
′
0A

′
0E

′ (6)

where Φ0 defined as the covariance matrix of the vec-
tor (e,T ,u)′ is a diagonal matrix by assumption. To

use in (10), we define that A! =
(

0 C
0 A

)
.

By using the real covariance matrix S ∈ Rl×l and
a parameter element vector θ ∈ Rp, the fit function is
defined as

fc(θ) =
1
2
tr((S −Σ)S−1)2 (7)

where tr(X) means the trace of a matrix. In order to

minimize the fit function, the function g(θ) = ∂fc(θ)
∂θi

is changed to

∂fc(θ)
∂θi

= tr

(
∂fc(θ)
∂Σ(θ)

∂Σ(θ)
∂θi

)
. (8)

In this equation, we derive that

∂fc

∂Σ
= S−1(Σy − S)S−1.

and also

∂fc

∂φij
=

(
B′

0A
′
0E

′ ∂f

∂Σ
EA0B0

)

ij

× 2.

Similarly, we derive that

∂fc

∂B0
= 2A′

0E
′ ∂f

∂Σ
EA0B0Φ0 (9)

∂fc

∂A!
= 2A′

0E
′ ∂f

∂Σ
EA0B0Φ0B

′
0A

′
0. (10)

From the above equations, the derivative function
g(θ) = ∂fc(θ)

∂θi
is derived from the component(i, j).

3.2. New Learning Algorithm

The function (7) should be minimized such that the
parameters at that time are determined. So we want
to solve the equation:

g(θ) = 0 (11)

where g(θ) = ∂fc

∂θ
.

However, the convergence depends on initial value
when the nonlinear equation (11) is solved by an it-
erative solution method. In order to escape the ini-
tial problem, we solve the following equation by using
Backward Euler method.

θ̇ = g(θ) (12)

The Backward Euler method is implicit numerical in-
tegral method for solving stiff systems. This method
approximates the solution at virtual time tk+1 = tk+h
by solving the implicit equation:

θk+1 = θk + hg(θk+1) (13)

where the gradient vector g(θk) is evaluated at θk.
Since this equation(13) may be nonlinear, solving it

in general requires an iterative solution method. In
this paper, quasi-Newton method is provided for solv-
ing the implicit equation. An implicit method requires
the solution of a nonlinear equation at each time step.
For each step of Backward Euler method, we use the
Newton method.
Let

F(θk+1) = θk+1 − θk − hg(θk+1), (14)

- 453 -



then the Newton method is described as

(n+1)θk+1 = (n)θk+1 − (
∂F((n)θk+1)

∂(n)θk+1
)−1F((n)θk+1).

(15)
The inverse matrix computation of the Jacobi matrix
(∂g((n)θk+1)

∂(n)θk+1
) is not available or expensive. Then the

approximation technique is used. That is,we replace
(I−h∂g((n)θk+1)

∂(n)θk+1
)−1 by Davidon-Fletcher-Powell(DFP)

approximation (17).
The gradient vector g(θn) = ∂fc

∂θ
is evaluated at θn.

H(θn) ∈ Rp×p is the matrix of second-order partial
derivatives of a function with respect to θn. This is
called Hessian. It is important to use the inverse of the
Hessian matrix in our algorithm. However, since the
Hessian leads to algorithmic and computational com-
plexities, an approximation technique of the inverse
Hessian is often used. We use the DFP method which
is one of quasi-Newton methods. The update formula
is as follows:

Hn+1 = Hn + An −Bn (16)

An =
pp′

p′q
Bn =

H ′
nqq′Hn

q′Hnq

p = −αHnF (θ(n−1)
k+1 ) q = F (θ(n)

k+1)− F (θ(n−1)
k+1 )

Hn+1 = Hn +
rr′

r′d
− H′

ndd′Hn

d′Hnd
(17)

where

r = −αHng(θn) d = g(θn+1)− g(θn)

.

4. Circuit Model

A circuit model which is constructed by the learning
algorithm becomes a data-mining CNN described as

State Equation

C
dxij(t)

dt
= − 1

Rx
xij(t) +

∑

C(k,l)∈Nr(i,j)

A(i, j; k, l)ykl(t)

+
∑

C(k,l)∈Nr(i,j)

B(i, j; k, l)ukl + T

(18)

Output

yij(t) =
1
2
(|xij + 1| − |xij − 1|) (19)

where a cell C(i, j) is placed in pixel P (i, j) in 2D-
plane.

Definition 1: A connection between a cell C(k, l)
and a cell C(i, j) in CNN is called symmetry for
A1(i, j; k, l) = A1(k, l; i, j) and one-directional asym-
metry for that if A0(i, j; k, l) 6= 0 then A0(k, l; i, j) = 0
without any loop.

For the type of each branch connection, we define
each element of A-template by using a binary param-
eter Ω such that:

AΩ(i, j; k, l) =
{

2A(i, j; k, l) if Ω = 0
A(i, j; k, l) if Ω = 1 (20)

where Ω = 0 and Ω = 1 mean asymmetrical and sym-
metrical connections respenctively.

Definition 2: if any connection is Ω = 0 or Ω = 1,
the CNN is called a data-mining CNN.

All Cell have different templates in the data-mining
CNN. The weights depends on the learning for the
structure determined by a data-mining analyser. The
structure is determined to satisfy the conditions of the
definitions. The data-mining CNN must give a stable
state in linear region [-1,1] of the piece-wise linear fuc-
tion in parallelism because it is a circuit model for the
data mining. The dynamics will be converged to an
equilibrium point according to the following theorem.

Theorem 1: The data-mining CNN energy function
which is defined as

E(t) = −
∑

(i,j)

∑

(k,l)

{Ω1
2

+(1−Ω)}AΩ(i, j; k, l)yij(t)ykl(t)

+
1

2Rx

∑

(i,j)

yij(t)2

-
∑

(i,j)

∑

(k,l)

B(i, j; k, l)yij(t)ukl −
∑

(i,j)

Tyij(t)/(21)

satisfies that:
dE(t)

dt
≤ 0 (22)

The proof is now done as:
Since the symmetries A1(i, j; k, l) = A1(k, l; i, j)

is satisfied for the symmetrical connection, the next
equations are derived in the data-mining CNN.

d

dt

1
2
AΩ(i, j; k, l)yij(t)ykl(t)+

d

dt

1
2
AΩ(k, l; i, j)ykl(t)yij(t)

= AΩ(i, j; k, l)
dyij(t)

dt
ykl(t) + AΩ(k, l; i, j)

dykl(t)
dt

yij(t).

One of above two terms is 0 for the asymmetrical con-
nection. Taking it into consideration, we can derive
that:

dE(t)
dt

= −
∑

(i,j)

∑

(k,l)

{Ω+(1−Ω)
1
2
}AΩ(i, j; k, l)

dyij

dxij

dxij(t)
dt

ykl(t)
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+
1

Rx

∑

(i,j)

dyij

dxij

dxij(t)
dt

yij(t)

−
∑

(i,j)

∑

(k,l)

B(i, j; k, l)
dyij

dxij

dxij(t)
dt

ukl(t)−
∑

(i,j)

T
dyij

dxij

dxij(t)
dt

By changing the element AΩ(i, j; k, l) to original ele-
ment A(i, j; k, l) by using the eqaution (20),the follow-
ing equations are derived:

dE(t)
dt

= −
∑

(i,j)

dyij

dxij

dxij(t)
dt

·[
∑

C(k,l)∈Nr(i,j)

A(i, j; k, l)ykl(t)− 1
Rx

yij(t)

+
∑

C(k,l)∈Nr(i,j)

B(i, j; k, l)ukl + T ]

= −
∑

|xij |<1

dxij(t)
dt

·

·[
∑

C(k,l)∈Nr(i,j)

A(i, j; k, l)ykl(t)− 1
Rx

xij(t)

+
∑

C(k,l)∈Nr(i,j)

B(i, j; k, l)ukl + T ].

(23)

By substituting the CNN sate equation (18) to above
equation, we can demonstrate that:

dE(t)
dt

= −
∑

|xij |<1

C

[
dxij(t)

dt

]2

≤ 0 (24)

Thorem 2: If

A(i, j; i, j) <
1

Rx
(25)

then, each cell converges to the linear region:
The proof should be done such as that in the

paper[1].

5. Simple Circuit Model

It is very important that the coefficient matrices are
sparse and its SFG is cellular structure. The cellular
structural state equations of the model for ”Purchase
of a Car” are given by

(
x1

x2

)
=

(
0 a12

0 0

)(
f(x1)
f(x2)

)
+

(
1

b21

) (
u1

)
+

(
T1

T2

)

(26)




y1

y2

y3

y4


 =




µ1

µ2

µ3

µ4




+




1 0
c21 0
0 c32

0 1




(
f(x1)
f(x2)

)
+




0
0
0
0




(
u1

)
+




e1

e2

e3

e4




(27)
Fig 1 shows the learning curves for the model of

”Purchase of a Car”. The number of steps for BE
method is shown on the horizontal axis, and a value
of the fit function is shown on the vertical axis.
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Figure 1: The simulation results of the model

6. Conclusions

A novel cellular learning analysis was proposed. The
model by the learning is constructed by a circuit with
current mode OTA’s with nonlinearity.
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