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Abstract—In this paper we propose a novel resonate-
and-fire-type digital spiking neuron. The neuron accepts an
stimulation input and generates various firing spike-trains.
We derive a return map which can describe the neuron dy-
namics without any approximations. The map is a con-
tinuous/discrete hybrid map. Using the map we analyze
the neuron dynamics and clarify typical bifurcation mech-
anisms of the neuron. We also discuss relations between
responses of our model and an ODE spiking neuron model.

1. Introduction

Until now many spiking neuron models have been pro-
posed [1]-[9] in order to develop artificial pulsed neu-
ral networks and to explore biological neuron dynam-
ics. As shown in Table 1, the integrate-and-fire model
has 1-dimensional continuous state dynamics with reset
[1],[2],[4]. The resonate-and-fire model has 2-dimensional
continuous state dynamics with reset [1],[2],[5]. They are
analog models, so dynamic parameter adjustments are dif-
ficult after implementation.

On the other hand, the digital spiking neuron model
which has digital state dynamics has been proposed [7]-[9].
The model can change its parameter values on chip after
implementation. In this paper, we propose a novel resonate-
and-fire-type digital spiking neuron and analyze it using a
return map without approximations. We also discuss rela-
tions between responses of our model and an ODE spiking
neuron model. Significances and novelties of this paper in-
clude the following points. (a) The new model can exhibit
various neural-behaviors such as the integrate-and-fire and
the resonate-and-fire behaviors whereas our old model [7]-
[9] can exhibit the integrate-and-fire behavior only. (b) The
new model can be implementation as coupled shift regis-
ters and then parameter values (e.g., wiring pattern among
the registers) can be dynamically adjusted after implemen-
tation.

2. Digital Spiking Neuron

In this paper, we present a novel resonate-and-fire-type
digital spiking neuron. As shown in Figure 1, the neuron
consists of three parts: N pieces of u-cells that are indexed
by i ∈ {0, 1, . . . ,N − 1} (left part); M pieces of v-cells
that are indexed by j ∈ {0, 1, . . . ,M − 1} (right part); and

Figure1: Digital spiking neuron.

a shift direction controller (middle part). The u-cells and
the v-cells correspond to a recovery variable and a mem-
brane potential of the Izhikevich’s simple model [1], re-
spectively. Each u-cell has a binary state Ui(t) ∈ {0, 1},
where t ∈ [0,∞) is a continuous time. We assume that
one u-cell has a state “1” and the other u-cells have states
“0”. Then we can introduce the integer state u(t) = i if
Ui(t) = 1, where u(t) ∈ {0, 1, . . . ,N − 1}. Similarly, each
v-cell has a binary state V j(t) ∈ {0, 1}, one v-cell has a state
“1”, and the other v-cells have states “0”. Then we can
introduce the integer state v(t) = j if V j(t) = 1, where
v(t) ∈ {0, 1, . . . ,M − 1}. As shown in Figure 1, the stimu-
lation input s(t) ∈ {0, 1} and the internal clock c(t) ∈ {0, 1}
change the states (v, u) of the neuron. The stimulation in-
put s(t) is applied to the v-cells only and shifts the state v

Table1: Difference between the proposed neuron and other models. IF:
integrate-and-fire, RF: resonate-and-fire, L:linear, NL: non-linear, NA:
non-autonomous.

Models Dynamics Behavior
Dynamic
parameter
adjustment

IF [1],[2],[4] 1-D ODE + reset IF, NA IF ×
RF [1],[2],[5] 2-D L-ODE + reset IF, RF ×
Izhikevich[1],[2] 2-D NL-ODE + reset IF, RF ×
DSN [7]-[9] Discrete state + reset NA IF ©
RF-type DSN
(proposed here) Discrete state + reset IF, RF ©
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Table2: Control rules. ↑:shift up, ↓:shift down, Mc :=
⌊

M−1
2

⌋
. f (v)

is a function which determines the shift direction.
Subspaces u-cells v-cells

A0 := {(v, u) | v = Mc, u = f (v)} fixed fixed
A1 := {(v, u) | v > Mc, u ≥ f (v)} ↑ ↓
A2 := {(v, u) | v ≤ Mc, u > f (v)} ↓ ↓
A3 := {(v, u) | v < Mc, u ≤ f (v)} ↓ ↑
A4 := {(v, u) | v ≥ Mc, u < f (v)} ↑ ↑

Figure2: Shift directions and typical orbit.

upward. Also the v-cells have a reset mechanism, i.e., the
state v is reset to a constant value C if the state v reaches
M − 1 (firing threshold) and an internal clock c(t) = 1 ar-
rives. At the reset moment, a firing spike y(t) = 1 is gen-
erated. The internal clock c(t) shifts the states (v, u). The
shift direction is decided by the shift direction controller
as shown in Figure 1. The controller rules the shift direc-
tion based on the subspaces {A0, . . . ,A4} of the entire space
{(v, u) | 0 ≤ v < M, 0 ≤ u < N} as shown in Table 2. The
control rule realizes a rotation dynamics (resonation-like
dynamics) as shown in Figure 2. Repeating the rotation and
firing dynamics, the neuron generates a spike-train y(t).

3. Return Map and Analysis

3.1. Return map

In this section we derive a return map to analyze the neu-
ron. As shown in Figure 3, we assume that the internal
clock c(t) and the stimulation input s(t) are periodic, and
these periods are 1 and d ∈ [0,∞), respectively. We define
t = 0 as the time when the internal clock c(t) is applied
first, and a variable θ ∈ (0, d] =: Θ as the initial phase of
the stimulation input s(t). Let t1 > 0 and t2 > t1. We de-
fine a function Ipt(t1, t2) as the number of the spikes of the
stimulation input s(t) during t1 < t ≤ t2 as follows.

Ipt(t1, t2) =


b(t2 − θ)/dc − b(t1 − θ)/dc if t1 ≥ θ.
b(t2 − θ)/dc + 1 if t2 ≥ θ > t1.

0 otherwise.
(1)

Figure3: Sketch of the neuron dynamics and meaning of vari-
ables.

Figure4: Definition of return map, each uk
n map to uk

n+1.

Additionally, we define a variable v′(t) and functions x(v, u)
and z(v, u) as follows.

v′(t) := v(t) + Ipt(t, t + 1).

x(v, u) :=


1 if (v, u) ∈ A3 ∪ A4.

−1 if (v, u) ∈ A1 ∪ A2, v , 0.
0 otherwise.

z(v, u) :=


1 if (v, u) ∈ A1 ∪ A4, u , N − 1.
−1 if (v, u) ∈ A2 ∪ A3, u , 0.
0 otherwise.

Then we can derive a discrete time map which repre-
sents the dynamics of the neuron for a discrete time τ ∈
{0, 1, 2, . . .} =: T as follows.v(τ + 1) = v′(τ) + x(v′(τ), u(τ))

u(τ + 1) = u(τ) + z(v′(τ), u(τ))
for v′(τ) < M − 1. (2)v(τ + 1) = C

u(τ + 1) = u(τ) + z(v′(τ), u(τ))
for v′(τ) ≥ M − 1. (3)

Next, we derive a return map on firing threshold L =
{(v, u) | v = M − 1, 0 ≤ u < N} as shown in Figure 4.
Let a point on L be represented by its u-coordinate. The
return map consists of two variables: un ∈ L means the
starting point of u(τ) from L; θn ∈ Θ means a phase of the
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stimulation input s(t) with respect to the starting moment,
where n ∈ T. Hence the return map is two-dimensional.
Let the states (v, u) be in the threshold L. Then the time τ
is reset to zero. From Equation (3) we havev(0) = C,

u(0) = un + z(M − 1, un),

and using Equation (2) and (3), the states (v, u) are deter-
mined uniquely for all τ. And we denote an inter spike
interval (ISI) by ∆n (see Figure 3). The ISI ∆n is given by

∆n = H(un, θn) =min{τ + 1 | τ ∈ T, v′(τ) ≥ M − 1}, (4)
H :L ×Θ→ {1, 2, . . .},

where v′(τ) is decided by (un, θn), so ∆n is a function of
(un, θn). And we define a function Θ(τ, θ) as follows.

Θ(τ, θ) = min{θ + ld − τ | l, τ ∈ T, θ + ld > τ}. (5)

Θ(τ, θ) denotes a phase of the stimulation input s(t) with
respect to the moment τ as shown in Figure 3. Finally we
can derive a return map as follows.

un+1
θn+1

=

=

F(un, θn)
G(un, θn)

=

=

u(∆n − 1),
Θ(∆n, θn), (6)

F : L ×Θ→ L, G : L ×Θ→ Θ.

As a result, the dynamics of the neuron is described by the
return map Equation (6) and the function H(un, θn) which
gives the ISI ∆n without approximations.

3.2. Analysis of Typical Bifurcation Mechanism

Using the return map in Equations (6), we analyze
the dynamics of the neuron. Examples of the projection
F(un, θn) of the return map (6) are shown in Figure 5. We
introduce the following.

Definition 1 Let r ≥ 2 be a positive integer. Sets
(u0,u1, . . . , ur−1) are said to be period-r sets if they are
the minimum disjoint sets such that un ∈ un+q (mod r) for
all n ≥ 1 and for a fixed integer q ∈ {0, 1, . . . , r − 1}.

In Figure 5(a) there are period-2 sets (u0,u1). The sets
(u0,u1) are very close to each other and seems like a
period-1 set, so the output y(t) seems to be 1-periodic. It
corresponds to “tonic spiking” of a neuron model [1].

In Figure 5(b) there are still period-2 sets (u0, u1). But
the distance between the sets u0 and u1 is longer than that
in Figure 5(a), so the output y(t) is 2-periodic.

In Figure 5(c), as the map changes, the period-2 sets
turns into period-3 sets, so the output y(t) is 3-periodic. In
this case the return map has other periodic sets (not shown
in the figure), i.e., the return map has co-existing attractors
with respect to the initial states.

Figure5: Projection F(un, θn) of the return map with typical or-
bits and the output spike-train y(t). Parameters are (M,N) =
(21, 55), f (v) =

⌊
1.3(v − Mc) +

⌊
N−1

2

⌋⌋
and d = 10.1.

Figure6: “Tonic spiking ↔ bursting” bifurcation in INa,p + IK +

IK(M) model [1]. I denotes a injected DC current.
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Figure7: (i) Bifurcation diagram of the state un for parameter C.
(ii)Characteristics of ISI ∆n. All parameters are the same as that
in Figure 5.

In Figure 5(d), there are still period-3 sets like Figure
5(c). However, the spike-train y(t) in Figure 5(d) is more
like a bursting spike-train than that in Figure 5(c).

Increasing the parameter C further, the left part of the
map F(un, θn) (located on a line) approaches to a diago-
nal line un+1 = un, and then the number of burst spikes
increases as shown in Figure 5(d)-(f). In Figure 5(e) the
period-3 sets turns into period-4 sets so the output y(t) is 4-
periodic. In Figure 5(f), the spike-train y(t) has many burst
spikes. This phenomena corresponds to the “tonic burst-
ing” of the neuron model [1].

The response of our model from the tonic spiking in Fig-
ure 5(a) to the tonic bursting in Figure 5(f) may correspond
to the “tonic spiking↔ bursting” bifurcation shown in Fig-
ure 6 [1]. Figure 7 shows a bifurcation diagram of the
state un and characteristics of ISI ∆n. The points (a)-(f) in
Figure 7 correspond to the maps F(un, θn) in Figure 5(a)-
(f), respectively. Detailed analysis on relation between the
responses and the bifurcation is an important future prob-
lems.

4. Conclusions

In this paper, we have proposed the novel resonate-and-
fire-type digital spiking neuron and clarified its typical bi-

furcation mechanisms using the return map. The neuron
can exhibit various neural-behaviors (e.g., tonic spiking
and tonic bursting as in Section 3). Here we can summa-
rize some comparisons of the proposed neuron with other
models as in Table 3. As shown in this table, the pro-
posed model can exhibit as much neural-behaviors as other
models. Future problems include: (a) analysis for another
parameters, (b) FPGA implementation of the neuron, (c)
proposing a learning algorithm, and (d) development of
network of the proposed neurons.
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Table3: Comparison of properties of the spiking neuron models. TS:
tonic spiking, TB: tonic bursting, IT: integrator, RS: resonator, BI: bio-
physically meaningful.

Models TS TB IT RS BI

Integrate-and-fire © × © × ×
Resonate-and-fire © × © © ×
Izhikevich © © © © ×
FitzHugh-Nagumo © × × © ×
Moris-Lecar © × © © ©
The neuron in this paper © © © © ×
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