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Abstract—This paper discusses a basic characteristic of
our proposed canonical deterministic particle swarm opti-
mizer (abbr. CD-PSO). The phase-plane dynamics of the
CD-PSO exhibits a rotation behavior. Since the rotation an-
gle of the CD-PSO leads to the diversity of the searching,
we can improve the performance to search optimum value
of the evaluation function. We pay attention to this rotation
behavior, an effective setting procedure of the rotation an-
gle is proposed. We analyze the basic characteristic of the
CD-PSO comparing the standard PSO. Also, we confirm
the performance by using some numerical simulations.

1. Introduction

Particle swarm optimization (PSO) is a meta-heuristic al-
gorithm for solving optimization problems, proposed by J.
Kennedy and R. Eberhart [1][2]. PSO is applicable to va-
riety of problems that neural networks, power electronics
and such [3]-[4]. The PSO generates to search velocity
towards known candidate solutions. The system contains
random numbers as stochastic factor, therefore it is difficult
to analysis of dynamics and parameter settings. In order to
analyze the dynamics of PSO, M. Clerc, and J. Kennedy
proposed Deterministic PSO (D-PSO) system, that remo-
ves the stochastic factor from the standard PSO [5]. D-PSO
(and PSO) is difficult to set parameters, since stability is de-
termined by the relationship of the parametersw, c1 andc2

[7]. We have proposed Canonical Deterministic PSO (CD-
PSO) that transformed D-PSO into canonical form [6]-[8].
Its stability determined by only one parameter∆.

On the other hand, PSO dynamics significantly change
depending on method of setting random numbers. Simi-
larly, CD-PSO dynamics depends on method of setting the
parameter of rotation angle.

This paper discusses the differences of the dynamics be-
tween the standard PSO and the CD-PSO.

2. Standard PSO

The standard PSO in a D-dimensional search space is
described as

vn
d ← vn

d + c1rn
1d(Pbestnd − xn

d) + c2rn
2d(Gbestd − xn

d)
xn

d ← xn
d + vn

d
(1)

xn
d ∈ ℜ denotes the location andvn

d ∈ ℜ denotes the
velocity, wheren = 1 ∼ N is index of the particle, and
d = 1 ∼ D is index of the dimension.Pbestnd ∈ ℜ is cal-
led a personal best, it means the location ofd-th dimension
that gives the best value of the evaluation function of then-
th particle in the past history.Gbestd ∈ ℜ is called a global
best, it means the location ofd-th dimension that gives the
best value in the evaluation function of all particles. Stan-
dard PSO has three parameters ofw, c1 andc2. w is inertia
weight coefficient, c1 andc2 are acceleration coefficients.
rn

1d ∈ [0, 1] andrn
2d ∈ [0, 1] are uniform random numbers

and be independent of each other. They are following two
definitions.

Scalar random number (PSOs)
The random number of each dimension is the same value
in then-th particle.

Vector random number (PSOv)
The random number of each dimension is different value in
then-th particle.

We adopted the parameters that are recommended in M.
Clerc and J. Kennedy’s paper [9][10].{

w = 0.729
c1 = c2 = 1.49445

(2)

3. Canonical Deterministic PSO

The CD-PSO in a D-dimensional search space is descri-
bed as[

xn
d

vn
d

]
= ∆

[
cosθnd − sinθnd
sinθnd cosθnd

] [
xn

d − pn
d

vn
d

]
+

[
pn

d
0

]
(3)

pn
d ≡ γ Pbestnd + (1− γ) Gbestd (4)

wherepn
d denotes the target location that determined from

the personal best and global best. CD-PSO has three para-
meters ofγ, ∆ andθnd. The parameterγ controls the mix-
ture rate of the personal best and global best,∆ is damping
factor that controls convergence of particles.θnd is rotation
angle that controls the frequency and sampling interval of
the search. We adopt two kinds of setting for rotation angle
by using basis angleϕ.
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Figure 1: Trajectory of three dimensional projection of ten dimensional variable space and searched space

Single rotation angle (SA)
The rotation angle of each dimension and each particle is
the same value, where

θnd = ϕ (5)

Multiple rotation angle (MA)
The rotation angle of each dimension and each particle is
different value, where

θnd = [ { (n− 1)D + d } ϕ ] mod 360◦ (6)

In the case of D=3 and N=10, the parameters are as fol-
lows: 

θ11 θ12 θ13
θ21 θ22 θ23

...
θ10

1 θ10
2 θ10

3

 =

ϕ 2ϕ 3ϕ
4ϕ 5ϕ 6ϕ

...
28ϕ 29ϕ 30ϕ


Based on our trial-and-error testing, the parameters are de-
termined as 

γ = 0.0
∆ = 0.95
ϕ = 180(3−

√
5) = 137.51◦

(7)

The value adopted inϕ is the golden angle that often ap-
pears in nature and is known as a suitable angle to fill the
circle. Perhaps most prominent example is a sequence of
sunflower seeds.

4. Dynamics and bias of searching

In order to compare the difference of the dynamics of the
algorithms, we perform some numerical simulations under
the conditions thatGbestd andPbestnd are fixed to the ori-
gin. Figures 1(a), (b), (c) and (d) show a three dimensio-
nal projection of ten dimensional variable space in PSOs,
PSOv, SA, and MA, respectively. The particles of PSOs
and SA are constrained on certain hyper-plane as shown in
Fig. 1(a) and Fig. 1(c). It is attributed to the fixed phase
difference between each dimension at location and velo-
city. In the PSOv and MA, because the random number
and rotation angle is different each dimension, the particle
is searching without bias.

In order to quantify the bias of searching, we divided the
search area into half-space relative to the origin in each di-
mension. Furthermore we measured whether particles se-
arched it or not. Examples of three-dimensional space, it
is divided into eight half-space. Namely, each half-space is
defined as{(+,+,+), (+,+,−), (+,−,+), . . . , (−,−,−)}.

Figures 1(e) and 1(f) illustrate the time fluctuation of the
number of searched half-spaces. In this case, the evaluation
function consists 10 dimensional variable, and the system
has 10 particles. It is divided into 1024 half-spaces. In
the PSOs and SA, increasing searched space is stop soon.
In the PSOv and MA, the number of searched half-spaces
is increased smoothly, and it converges to the maximum
number. These results clearly indicate that there exists a
bias in PSOs and SA searching. Furthermore demonstrate
the similarity between each PSOs and SA, PAOv and MA.
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(a) PSOs
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(b) PSOv
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(c) SA
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(d) MA

Figure 2: Search process of Sphere function (f1)
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(a) PSOs
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(b) PSOv
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(c) SA
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(d) MA

Figure 3: Search process of Rotated ellipsoidal function (f2)

5. Numerical Experiments

We carry out the numerical simulation using some well-
known benchmark test functions to confirm the effects of
the bias of searching. We adopted the unimodal function
to benchmark for two reasons. First, it can surely find a

good solution if searching every neighborhood. Second, it
unaffected by local solutions. The numerical simulations
are carried out applying the two unimodal functions under
the following conditions:

D = 10, N = 10, tmax= 1000, Trials = 1000
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1) Sphere function( f1)

f1(x) =
D∑

i=1

x2
i (8)

xi ∈ [−64,64], the global minimum isx∗ = (0, . . . , 0) with
f1 (x∗) = 0. It is unimodal and separable function.

2) Rotated ellipsoidal function( f2)

f2 (x) =
D∑

i=1

 i∑
k=1

xk

2 (9)

xi ∈ [−64,64], the global minimum isx∗ = (0, . . . , 0) with
f2 (x∗) = 0. It is unimodal and non-separable function.

To measure the degree of convergence of the particles,
we used the following equation:

Convg=
1
N

N∑
n=1

√√√ D∑
d=1

[
xn

d − x̄d

]2
x̄d =

1
N

N∑
n=1

xn
d

(10)

Convg represent the average of the Euclidean distance from
the center of the particle swarm.

Figures 2 and 3 show an examples of search process on
the f1 and f2. In the PSO and SA, we can see that the Convg
decreases quickly, furthermore fitness stagnated soon. In
contrast, in others, we can see that the Convg decreases
slowly, furthermore fitness decrease to continues. This is
consistent with the results expected from described above.
Comparing the two functions,f2 is more difficult to search
the optimum value thanf1 since f2 is non-separable. The
convergence time of the PSOv and MA depend on the diffi-
culty of the benchmark function, however other cases show
the similar in each function.

The results are summarized in Table 1. The PSOv and
MA can realize better fitness than the PSOs and SA. MA
shows slightly better performance than PSOv, which sug-
gests the usefulness of CD-PSO.

Table 1: Results

f1 Fitness f2 Fitness

PSOs 5.26 E+02 6.67 E+02
PSOv 2.14 E-21 3.83 E-04
SA 1.63 E+00 7.14 E+01
MA 3.92 E-22 1.83 E-07

6. Conclusions

This paper described the PSO dynamics by random num-
ber, and the CD-PSO dynamics by rotation angle. Our

numerical simulation results indicated that the PSOv and
MA are useful to search optimum solution than the PSOs
and SA system. In summary, the searching diversity of the
PSOv and MA depends on behavior of each dimension of
the particle. Namely, the behavior is caused by the random
factor and the rotation angle. In general, we can say that the
random factor leads to the diversity. On the other hand, our
CD-PSO is a deterministic system, namely, the system does
not contain the random factor. Even in such deterministic
system, the CD-PSO can create the diversity to control the
rotation angle.

This paper represents bias of the search and benchmark
on the unimodal functions. Further studies are needed in
order to analysis of the global search on the multimodal
function.
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