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Abstract—The Inverse function Delayed model (ID model)
is a neuron model that has negative resistance dynamics. The neg-
ative resistance can destabilize local minimum states, which are
undesirable network responses, so that the ID network can remove
these states. Actually, we have demonstrated that the ID network
can perfectly remove all local minima with N-Queen problems
or 4-Color problems, where stationary states are only correct an-
swer. Moreover, we have also applied the same method to the
case of Traveling Salesman Problems (TSP) by expanding the en-
ergy function to the quartic form that means higher order synaptic
connections. However, we need general energy functions to solve
the other combinatorial optimization problems.

In this paper, we redefine the quartic form energy function to be
able to apply not only TSPs but also Quadratic Assign Problems
(QAP). After that we show that the ID network has only global
minima, which are located on the vertices of the output space, as
the stationary states, and the parameter region is discussed.

1. Introduction

Hopfield et al. proposed a neural network that has dy-
namics of moving along the gradient of the quadratic form
energy function. This network can find the solution of com-
binatorial optimization problems (COPs) by assigning the
optimal solution to the global minima of this energy func-
tion. However, the network state is often trapped in local
minima. This is the local minimum problem.

As an improvement way of this problem, the method
of using the Inverse function Delayed model (ID model)
[1] has been proposed. One of important properties of ID
model is a negative resistance, and the negative resistance
region is controllable. Hence we can destabilize the lo-
cal minimum states of the energy function by setting the
appropriate negative resistance region. Actually, N-Queen
problems or 4-Color problems are solved with 100% suc-
cess rate by using the ID model[2]. However, in Traveling
Salesman Problems (TSP) or Quadratic Assignment Prob-
lems (QAP), this method cannot always destabilize only
the local minimum states. Hence, we have used the quartic
form energy function [3] to the ID model[4] for the pur-
pose of using the same method to apply with the TSP. In
this case, only the global minimum states can reaches ver-

tices of the hypercube of output space as a stationary state.
Unfortunately, we cannot use this quartic form energy func-
tion to other problems.

In this paper, we aim to expand this quartic form energy
function for the ID network to deal with not only TSPs but
also other COPs. Moreover, by estimating the equilibrium
points of the local minima, we aim to obtain the minimum
parameter region analytically to be able to destabilize them
perfectly. Finally, we confirm analytical result by dealing
with the TSP and the QAP numerically.

2. Higher-order Connection ID model

2.1. Basic Equations

A Higher order Connection ID model (HC-ID model) is
a ID model with higher order synaptic connections. To ap-
ply the quartic form energy function, we consider the HC-
ID network with 3rd-order synaptic connections, described
as follows[4]:

τu
dui

dt
=

N∑
j=1

N∑
k=1

N∑
l=1

wi jklx jxk xl

+

N∑
j=1

N∑
k=1

wi jk x jxk +

N∑
j=1

wi jx j + hi, (1)

τx
dxi

dt
=ui − g(xi), (2)

where N is the number of neurons, and ui, xi and hi are the
internal state, the output and the bias of neuron i, respec-
tively. wi jk··· is the synaptic weight from neurons j, k, · · ·
to neuron i. τu and τx(� τu) is the time constant of the
internal state and the output, respectively. Moreover from
Eqs.(1) and (2),

τx
d2xi

dt2
+η(xi)

dxi

dt
= Fi (3)

is derived, where

η(xi) =
dg(x)

dx

∣∣∣∣∣
x=xi

+
τx

τu
, (4)
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Figure 1: The g-function and negative resistance region.

Fi = −
1
τu

(∑
j

∑
k

∑
l

wi jklx jxk xl

+
∑

j

∑
k

wi jk x jxk +
∑

j

wi jx j + hi

)
. (5)

Eq.(3) shows that the HC-ID model is updated by dynam-
ics of particles, as well as the ID model. At this time, η(xi)
means the friction, and Fi is force derived from the poten-
tial.

2.2. Negative Resistance Region and Energy Function

g(x) in Eq.(4) is[2]

g(x) =
1
β

ln
( x
1 − x

)
− α

(
x − 1

2

)
, (6)

where α and β is a control parameter of the range and the
gain of the negative resistance, respectively. Because g(x)
has an N-shape as shown in Fig. 1, η(xi) has a negative
value. This region is called the negative resistance region,
and the length of this region L is defined as

L =

√
1
4
− 1
β(α − τx/τu)

. (7)

Next, when the synaptic weights are symmetric (wi jkl··· =
w jikl··· = w jilk··· = · · · ), the energy function of HC-ID model
can be defined.

EHC-ID = −
1

4τu

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

wi jklxix jxk xl

− 1
3τu

N∑
i=1

N∑
j=1

N∑
k=1

wi jk xix jxk −
1

2τu

N∑
i=1

N∑
j=1

wi jxix j

− 1
τu

N∑
i=1

hixi +
τx

2

N∑
i=1

(
dxi

dt

)2

(8)

From Eqs. (1) and (2), its time derivative is

dEHC-ID

dt
= −

∑
i

η(xi)

(
dxi

dt

)2

. (9)

Hence if the network state is in the negative resistance re-
gion, EHC-ID increases with time like the normal connection
ID model. Moreover, from Eqs.(5) and (8), the following
equation is derived:

Fi = −
1
τu
· ∂EHC-ID

∂xi
. (10)

Therefore if EHC-ID/∂xi < 0, the output xi receives the force
derived from the potential toward 1, and if EHC-ID/∂xi > 0,
xi receives the force toward 0.

3. Design of Quartic Form Energy Function for COP

3.1. Quartic Form Energy Function for COP

We improve the quartic form energy function to apply it
for general COPs:

E4TH =
A
2

n∑
i=1

 n∑
x=1

xxi − 1

2

+
A
2

n∑
x=1

 n∑
i=1

xxi − 1

2

+
B
2

n∑
x=1

n∑
i=1

n∑
y=1

n∑
j=1

bxi,y jxxixy j(1 − xxixy j)

+
C
2

 n∑
x=1

n∑
i=1

n∑
y=1

n∑
j=1

bxi,y jxxixy j

2

, (11)

where A,B and C are positive coefficients, n is the prob-
lem size of COP (n2 = N), and bxi,y j ∈ b[N×N] is a cost
value when the neuron (x, i) and (y, j) fire. The first and
second terms of Eq.(11) have minimum value if only one
neuron fires in each row and column, and the third term is
minimized when output values have 0 or 1. These terms
mean constrained condition, and it will be 0 when the con-
dition is satisfied. Under this condition, the fourth term ex-
presses a squared value of cost shown by the network state.
Therefore if we can denote a COP by N-dimension vector
of neuron and detect the cost matrix b, we can apply the
quartic form energy function to this COP, like the case of
the quadratic form function in the reference [5].

3.2. Coefficients Condition to Stabilize Only Global
Minimum States

From Eq.(11), the gradient of E4TH is calculated as

∂E4TH

∂xah
= A

(∑
x

xxh − 1
)
+ A

(∑
i

xai − 1
)

+ 2B
∑

y

∑
j

bah,y jxy j

(1
2
− xahxy j

)
+ 2C

∑
z

∑
k

∑
w

∑
l

bzk,wlxzk xwl ×
∑

y

∑
j

bah,y jxy j.

(12)
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First, to activate only one neuron in each row and column,
coefficient A has to satisfy the condition:

A >max [B · Mbmax ,

M/2 · bmax {B + 2C {M (N − 1) − 1} bmax}] , (13)

where M is maximum number of connection between a
neuron and others without the same row and column neu-
rons. Also, bmax is maximum term of cost matrix b.

Next, we assume that the negative resistance region is
enough large to cover intermediate value of the output. Un-
der this assumption, all output values are 0 or 1, so that
x2

i = xi holds. Hence, Eq.(12) is described as

∂E4TH

∂xah
=

∑
y

∑
j

bah,y jxy j×{
2B

(1
2
− xah

)
+ 2C

∑
z

∑
k

∑
w

∑
l

bzk,wlxzk xwl

}
=

∑
y

bah,yJ(y)

{
2B

(1
2
− xah

)
+ 2C

∑
z

∑
w

bzJ(z),wJ(w)

}
=

cah(x) · 4C {B/4C + csol(x)} (xah = 0)

cah(x) · 4C {−B/4C + csol(x)} (xah = 1)
. (14)

where J(y) means row index of firing neuron in column y,
and

cah(x) =
∑

y

bah,yJ(y), (15)

csol(x) =
1
2

∑
z

∑
w

bzJ(z),wJ(w). (16)

From Eq.(15), csol(x) means the cost value of the network
state x. At this time, from Eq.(14), ∂E4TH/∂xah > 0 is
always satisfied when xah ∼ 0. Hence xah receives force
toward 0 and this state is stable. On the other hand, when
xah ∼ 1, the sign of ∂E4TH/∂xah depends on magnitude re-
lation between B/4C and csol(x). If B/4C > csol(x), the
output xah receives force toward 1, and this state is stable.
However, if B/4C < csol(x), this state becomes unstable.
Therefore, if the following equation is satisfied, the net-
work can stabilize only global minimum states:

csol(x0) < B/4C < csol(x1), (17)

where csol(x0) and csol(x1) are the cost value of optimal so-
lution and the 2nd optimal solution, respectively.

3.3. Estimate the Equilibrium Points of Local Mini-
mum States

If we assume that the negative resistance region covers
the output space except the vertices, the outputs can be only
0 or 1. Hence the local minimum states always destabi-
lized. However, because the parameter β in Eq. (6) has
finite value, the regions where the network state can be sta-
ble exist apart from the vertices. Hence we estimate the

furthest equilibrium point of local minimum states from
the vertices to cover all of the local minimum states with
the negative resistance region.

To estimate that point, we define ξxi as the distance from
0 or 1 to output value of the neuron (x, i). Moreover, we
define firing neuron (a, J(a)) as the furthest neuron from 1,
and ξmax = ξaJ(a) as the distance from 1 to output value of
the neuron (a, J(a)). Under these conditions, ∂E4TH/∂xaJ(a)

is calculated as

∂E4TH

∂xaJ(a)
≈ A

{
−2ξmax +

(∑
x,a

ξxJ(a) +
∑

i,J(a)

ξai

)}
+ B

∑
y,a

{
baJ(a),yJ(y)(−1 + 3ξyJ(y) + 2ξmax) +

∑
j,J(y)

baJ(a),y jξy j

}
+ 2C

∑
y,a

baJ(a),yJ(y)

×
[∑

z,a

{
2baJ(a),zJ(z)(1 − ξmax − ξzJ(z)) + 2

∑
k,J(z)

baJ(a),zkξzk

}
+

∑
z,a

∑
w,a

{
bzJ(z),wJ(w)(1 − 2ξzJ(z)) + 2

∑
l,J(w)

bzJ(z),wlξwl

}]
+ 2C

∑
y,a

[
−baJ(a),yJ(y)ξyJ(y) +

∑
j,J(y)

baJ(a),y jξy j

]
×

∑
z,a

[
2baJ(a),zJ(z) +

∑
w,a

bzJ(z),wJ(w)

]
. (18)

In this calculation, we consider that bxi,xi = 0 and bxi,y j =

by j,xi. Also, we consider a linear approximation about ξ
because ξ is negligible small. In Eq.(18), when the ξ of
positive terms are 0 and the ξ of negative terms are ξmax, the
right-side of Eq. (18) has minimum value. Thus, following
inequality is satisfied at least:

∂E4TH

∂xaJ(a)
> −2Aξmax − B

∑
y,a

baJ(a),yJ(y)
(
1 − 2ξmax

)
+ 2C

∑
y,a

baJ(a),yJ(y)

[(
1 − 3ξmax

){∑
z

∑
w

bzJ(z),wJ(w)

}]
= caJ(a)(x)

{−B + 4Ccsol(x)
}

− ξmax
[
2A + caJ(a)(x)

{−2B + 12Ccsol(x)
}]
. (19)

Because the network state is the local minimum states
now(x = x1), output xah has to be received the force toward
0. Hence, from Eq.(10), ∂E4TH/∂xaJ(a) must have positive
value. From this constraint, ξmax has to hold as:

ξmax <
caJ(a)(x1) {−B + 4Ccsol(x1)}

2A + caJ(a)(x1) {−2B + 12Ccsol(x1)} . (20)

If the network state is a local minimum state, at least
the distance of firing neuron from 1 to the output value
is larger than maximum value of ξmax. Therefore, the
length of the negative resistance region has to be larger than
(1 − max[ξmax]) to destabilize the local minimum states.
Moreover, from Eq.(20), we can estimate (max[ξmax]) value
independently of the problem size.
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Figure 2: The result of the 4-TSP (β = 200,C = 0.1, A =
8.05).
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Figure 3: The result of the 4-QAP (β = 2000,C = 0.1, A =
386.38).

4. Simulation Results

In this section, we apply the proposed energy function to
a 4city-TSP and a 4size-QAP, and confirm the analytical re-
sult of previous sections by using computer simulations. In
all simulations, we tested by 100 trials with random initial
values.

4.1. Equilibrium Points of Local Minimum States

First, we investigated about the furthest equilibrium
point of local minimum states from the vertices. To inves-
tigate the equilibrium point, we set no negative resistance
region by setting α = 0. Moreover, we fixed the coefficients
A and C, and changed B value. Figs. 2 and 3 show the sim-
ulation results of the 4-TSP and the 4-QAP, respectively,
and the horizontal axis shows the value of B/4C. Moreover,
the solid line and the dot line mean the calculated value
from Eq.(20) and the simulated value of (1 − max[ξmax]),
respectively.

From the lines of figures, about maximum value of ξmax,

the simulated values are always larger than analytical val-
ues. Therefore, we can confirm that there are no equilib-
rium points of the local minimum states in the region de-
cided by the analytical result.

4.2. Coefficients Dependency of Network States

Next, we investigated the relationship between the ap-
pearance rate of the network states and the coefficients
value of B/4C. In this test, the length of the negative re-
sistance region was set in accordance with the analytical
result of ξmax, and the histogram of figures show the ap-
pearance rate of the network states.

In both cases of the TSP and the QAP, the states whose
cost is larger than B/4C have never appeared as stationary
state. Therefore we can obtain only optimal solutions when
the network state reaches stationary state if the condition
Eq.(17) is satisfied.

5. Conclusion

In this paper, we proposed the improved quartic form en-
ergy function to deal with the general COP. In the case of
using this improved energy function, we can show that only
the global minimum states are stationary states in the ver-
tices of the hypercube of output space if Eq.(17) is satisfied.
Moreover, we estimated the equilibrium points of the local
minimum states, and found regions where the equilibrium
points of the local minimum states did not exist. There-
fore if we cover all of the output space except these regions
with the negative resistance region, we can destabilize the
local minimum states perfectly. Finally, we confirmed the
analytical result by dealing with the TSP and the QAP.
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