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Abstract—In this paper we present a high-level stochastic
model for a true random number generator designed in 0.35 μm
CMOS technology, which internally exploits a pipeline analog-
to-digital converter modified to operate as a set of chaotic maps.
The model is tuned on Monte Carlo circuit-level simulations to
include the non-idealities of the designed circuit in the chaotic
map model. The parameters of the model are then verified with
a comparison between results of NIST statistical tests of the out-
put streams given both by the stochastic model and by the im-
plemented circuit. Once properly tuned, such model actually de-
fines a macro-block which can be exploited for fast generation
of a random bit stream necessary in the simulation of others cir-
cuits/systems.

1. Introduction

By definition, a Random Number Generator (RNG) is a circuit
capable of producing perfectly unpredictable bits. RNGs repre-
sent a fundamental issue in many engineering tasks; for instance
they are are used in all cryptographic applications, where they are
fundamental in the synthesis of confidential keys for both sym-
metric and public-key crypto-systems [1].

It is generally recognized that ideal random sources can only
be approximated. An ideal random source is capable of producing
infinitely long sequences made of perfectly independent bits, with
the property that, when restarted, the source never reproduces a
previously delivered sequence (non-repeatability).

Traditionally the most used sources of randomness rely on
pseudo-random number generators (PRNGs). These are algo-
rithms capable of “expanding” short seeds into long, irregular bit
sequences. The procedure is completely repeatable and, in fact,
non random at all; the only source of entropy in the process is
actually represented by the seed.

The recent, huge growth of data-security applications is ques-
tioning the general application of PRNGs, since no cryptographic
algorithm can be stronger than its underlying RNG [2]. For this
reason, many true random number generators (TRNGs) as op-
posed to PRNGs are now being developed. Typically TRNGs are
based on processes like Johnson thermal noise [3], shot noise, jit-
ter in PLL or free oscillator [4], but can also be based on quantum
effects like single photon reflection [5]. In particular with the lat-
ter implementation it is possible to achieve very good results in
terms both of quality and speed; however this often do not rep-
resent a solution currently embeddable in silicon integrated tech-
nology.

The RNG we discuss in this paper belong to the class of True-
random number generators, and it is based on a set of simple one-
dimensional chaotic maps [6], following the approach recently
proposed in [7]. There, a 1.5 bit/stage pipeline analog-to-digital
converter (ADC) [8] has been reconfigured to implement a chaotic
circuit that has been theoretically proved to generate independent

and identically distributed – i.e. random – symbols. A prototype
of this TRNG has been designed and fabricated in 0.35 μm 3.3 V
CMOS technology [9].

In this paper we take into account a behavioral model devel-
oped for the designed TRNG and based on Monte Carlo simu-
lations of the circuit, and compares it with results achieved by
measurements on the chip prototype. Through this comparison,
we can adjust the model parameters to fit the implemented cir-
cuit. With this adjustment, we can provide a realistic model in-
cluding all the non-idealities of the designed circuit. This model
can be used, for instance, in high-level simulations of a crypto-
graphic system to predict the effect of non-idealities of the RNG
on system security.

The paper is organized as follows. In section 2 we provide a
brief description of the designed circuit. In section 3 we provide
a behavioral, high-level model of the circuit developed on Monte
Carlo simulation; while in section 4 we tune model parameters
on measurements on circuit prototype. Finally, we draw some
conclusions.

2. Circuit Description

The designed circuit is based on pipeline ADCs technology:
the architecture of a standard pipeline ADC, including the mod-
ifications introduced in order to make the circuit working as a
TRNG, is shown in Fig. 1. When working as an A/D converter,
each i-th stage (excluding the final k-th that is usually incomplete)
computes a coarse m-bit representation D(i) of its input v(i) (sam-
pled at the beginning of the time step) and then calculates and
rescales an analog error conversion e(i) to be passed (at the fol-
lowing time step) to the next stage (i + 1)-th. Intriguing, in the
architecture known as 1 + 1/2 bit/stage the (normalized) relation
between the input v(i)

n of the i-th stage at time step n and the input
v(i+1)

n+1 of the following (i + 1)-th stage at the next time step n+ 1 is

v(i+1)
n+1 = M

(
v(i)

n

)
(1)

where the M(·) function is depicted in Fig. 2-(a) and it can be
written as:

M(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2x + 2 if x ≤ −1/2
2x if − 1/2 ≤ x < 1/2
2x − 2 if x > 1/2

(2)

If we take the generic i-th stage including the Sample/Hold,
and close it into a loopback, i.e. if we set v(i) = v(i+1), we get a
system whose evolution is described by:

v(i)
n+1 = M

(
v(i)

n

)
(3)

i.e. we have a discrete-time 1D autonomous system usually
known as chaotic map. Furthermore, the particular structure of
M(·) makes this map a Piece-Wise Affine Markov (PWAM) map.
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Figure 1: Basic structure of a pipeline ADC and modifications required (dotted elements) to obtain a TRNG.

Figure 2: (a) PWAM map found in 1.5 bit/stage ADC pipeline
converters; and (b) Markov chain describing the system evolution.

A deep and exhaustive analysis on chaotic maps and of PWAM
maps can be found in [6]. Here it is enough to recall that the
evolution of PWAM map systems can be studied with a Markov
chain: when M(·) is the function in (2), and assuming the two
states X0 : v(i) ∈ [−1,−1/2) ∪ [1/2, 1] and X1 : v(i) ∈ (−1/2, 1/2] the
Markov chain associated to system (3) is the chain of Fig. 2-B
and it is exactly the chain describing a random number generator,
more specifically a random bit generator. Note that the particular
structure of the 11/2 bit stage allows us to evaluate if the system is
in the state X0 or X1 simply looking at the digital conversion D(i)

of the stage. This means that closing a single stage of a 11/2 A/D
converter into a loopback and adding a simple digital logic it is
enough to get a chaos-based TRNG.

Instead, if we close the loopback after the k − 1 of complete
stages (that is the modification proposed in Fig. 1), we have the a
pipeline of chaotic map:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v(0)
n+1 = M

(
v(k−2)

n

)
v(1)

n+1 = M
(
v(0)

n

)
· · ·
v(k−2)

n+1 = M
(
v(k−3)

n

) (4)

It is easy to recognize that system (4) is equivalent to k − 1
chaotic maps as (3) running in parallel, i.e. k − 1 random bit
generators running simultaneously. So, closing into a loopback
the whole pipeline (except the last, incomplete stage) changes the
A/D converter into a pipeline of chaotic maps, that also works as a
random number generator when substituting the digital correction
logic ot the A/D converter with a proper digital logic.

Following this, we designed a RNG in 0.35 μm technology.
The chip, whose microphotograph can be found in Fig. 3, includes
two pipelines, the first one composed by two stages, the second

Figure 3: Microphotograph of the designed ADC-based RNG.

one by eight stages. The maximum working speed is 5 Mbit/s per
stage; however the RNG achieves the best output stream quality
at the speed of 1.5 Mbit/s per stage. A more detailed description
of the circuit can be found in [9].

3. Behavioral model

From many Monte Carlo simulation runs of about 25 × 103

clock periods of the two-stages pipeline circuit a behavioral model
of the circuit has been extracted and presented in [10]. The model
has been designed upon the two sets of points (xk+1,xk), one for
every stage, extracted from the Monte Carlo runs. With these
sets, we tried to rebuild the actual M(·) function, i.e. the function
including all non-idealities due to implementation errors. Fur-
thermore, a different function has been rebuild to each stage, thus
including into the model both the differences which may exist be-
tween stages of different pipelines or between stages of the same
pipeline.

The switched capacitor implementation and the fully differen-
tial architecture ensure a very high linearity and a high precision.
An example of the M function extracted by simulation is depicted
in Fig. 4-(a) ; we modeled M(·) as

M (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1.9995x + β if condition λ1 (x) is true
1.9995x if condition λ2 (x) is true
1.9995x − β if condition λ3 (x) is true

(5)

The determination of the three condition λ1, λ2 and λ3 is non-
trivial. Ideally, two points α− and α+ exist, with λ1 (x) ≡ x < α−,
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Figure 4: (a) A collection of (xk+1,xk) points for a single map; and
(b) zoom around point α−.

parameter(s) mean value standard deviation
β 2.0376 0.09806
Δα 0 0.004551

s+,s− 124.7316 60.177

Table 1: Expected value and standard deviation for model param-
eters.

λ2 (x) ≡ α− ≤ x < α+ and λ3 (x) ≡ x ≥ α+. Yet, the real behavior
of the system around α− is depicted in Fig. 4-(b) (the behavior
near α+ is very similar). While at a certain distance from the
point the behavior is fully deterministic, a point very close to the
α− could sometimes verify condition λ1 and sometimes λ2 (the
gray area in the figure). This behavior could be explained consid-
ering interferences (e.g spikes on the power supply voltage) from
the other parts of the circuit. To include this, we have developed
a stochastic model, i.e. standing the M(·) function in (5),the the
three condition λ1, λ2 and λ3 are described as a probability func-
tion of x:

M (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1.9995x + β x < 0,with probability 1−p (x)
1.9995x with probability p (x)
1.9995x − β x > 0,with probability 1−p (x)

(6)

with

p (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < α− − 1/2s−
1/2 + (x − α−) s− α− − 1/2s− ≤ x < α− + 1/2s−

1 α− + 1/2s− ≤ x < α− − 1/2s+

1/2 − (x − α+) s+ α+ − 1/2s+ ≤ x < α+ + 1/2s+

0 x ≥ α+ + 1/2s+

(7)

i.e. p (x) is a trapezoidal function that can be seen in Fig. 5),
along with the observed density of point satisfying condition λ2.

In the light of numerical analysis of the Monte Carlo simula-
tions, the parameters of the model are the following:

• β is assumed as a global parameter for the entire pipeline

• α+ and α− are parameter which different for each stage in the
pipeline, and they are computed as α+ = −α− = β/4 + Δα

• s− and s+ are independent parameters assumed different for
each stage of the pipeline.

The four basic parameters β, Δα, s− and s− have been assumed to
be Gaussian random variables, whose mean value and statistical
deviation are indicated in Table 1.
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Figure 5: (a) Density of points satisfying condition λ2 (solid line)
and its trapezoidal approximation p (x) (dotted line) around α−;
and (b) around α+.

4. Comparison between circuit model and circuit measure-
ments

In this paper we compare results of the model introduced in the
previous section with results of the eight-stages pipeline included
in the designed prototype, and running at the optimum speed of
1.5 Mbit/s per stage, i.e. 12 Mbit/s. The comparison has been
made in terms of comparison of the quality of the random bit-
stream generated both by the model and by the prototype. To al-
low a correct interpretation of the results, let us clarify two points.
(a.) The developed model is a stochastic model; this means that
it requires an internal random source to be applied. Results pre-
sented here are obtained using the Mersenne-Twister algorithm;
switching to any other random source gives similar results. (b.)
The comparison is only statistical, i.e. we compared the ratio
of generated sequences capable to pass a random test. However,
while each sequence has been generated by a difference instance
of the model (i.e. with different, randomly drawn parameters),
only a few prototypes have been tested. This limitation is due to
the limited number of samples delivered by the foundry.

To evaluated the quality of the generated random bits we used
the SP800-22 test suite from NIST [11]. This suite is composed
by 14 independent tests to be applied to a stream of 106 bits. We
have generated several 106 bits sequences (more precisely, 20,000
sequences) both with the developed model and with the prototype,
and compared the ratio of sequences passing the NIST tests. Re-
sults are shown in Table 2, and show that the quality of the gen-
erated bitstream (that is very high, since a simple post processing
like the XOR-2 is enough to let near all sequences pass all the
tests in the suite) is slightly overestimated by the model. This is,
of course, expected.

In order to match the model with the measurements from the
prototype, we have to find new set of parameters, such that the
quality of the stream generated by the model with them can be
compared with the quality stream generated by the prototype. We
can assume the new parameters with the same mean values as
in Table 1, introducing a degrading factor Θ as a multiplicative
factor for the standard deviation for all of them. In this way, the
determination of the correct set of parameters is reduced to the
computation of the degrading factor. Furthermore, to compare
the quality of the two random streams, we have considered the two
vectors A and B, whose i-th components are the ratio of sequences
passing the i-th test in the suite, and the two quantities

d(A, B) =
1
n

√√
n∑

i=1

(Ai − Bi)
2 (8)
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XOR-2 post-proc No post-proc
SP800-22 test model results model results

Frequency
Block Frequency
Cumulative Sums
Runs
Longest Run of 1s
Matrix Rank
Spectral (DFT)
NOT Matching
OT Matching
Universal
Approx. Entropy
Random Excursion
Random Exc. Var.
Serial
Linear Complexity

0.963800
0.966900
0.965000
0.967000
0.968600
0.967800
0.965900
0.968200
0.968100
0.966400
0.965600
0.987809
0.988468
0.967800
0.968900

0.948650
0.987850
0.951300
0.987800
0.989750
0.988950
0.988850
0.988550
0.984900
0.989000
0.987950
0.988390
0.988756
0.989350
0.990150

0.447000
0.885400
0.456100
0.626000
0.947300
0.969300
0.944300
0.949000
0.910700
0.942700
0.730000
0.991262
0.988815
0.961200
0.967100

0.000000
0.478800
0.000000
0.000000
0.988900
0.987300
0.936500
0.981300
0.989900
0.986000
0.014100
0.973585
0.992453
0.980900
0.990400

Table 2: Ratio of NIST test passed for sequences generated both
by the prototype and by the model, with a very simple XOR-2
post-processing and without any postprocessing.
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Figure 6: Comparison between the quality of the bitstream of the
prototype and the model assuming a degrading factor Θ using the
distance function (8) and the correlation function (9).

that represents the distance between the two vectors, and

c(A, B) =
∑n

i=1(Ai − E[Ai])(Bi − E[Bi])
1
2

∑n
i=1 A2

i +
1
2

∑n
i=1 B2

i

(9)

that represent the correlation between A and B. In (8) we have
assumed E[Ai] = E[Bi] = 0.99 that is the expected ratio of se-
quences passing the test in the ideal case.

Results are shown in Fig. 6, where bot distance function (8)
and correlation function (9) are shown for different values of Θ.
The comparison has been made between unprocessed data (i.e.
without any post=processing). The value of Θ for which the two
bitstreams have the most similar quality is around Θ = 3.5. This
can be assumed as the value of the degrading ratio for which the
model match the prototype.

5. Conclusions

In this paper we have compared results of randomness tests
achieved by a prototype of a designed RNG with results achieved
by a stochastic, high-level model of the same circuit obtained

though circuital simulation. With this comparison we are able
to fit the model parameters to the true-implemented circuit. In
this way we can provide a more realistic model that can be used
to simulate how the non-idealities of the proposed RNG can affect
the system where it is employed.
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