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‡Department of Eonomis, University Carlo BoUrbino, ItalyEmail: pasal.harge�insa-toulouse.fr, daniele.fournier�insa-toulouse.fr, gardini�eon.uniurb.itAbstrat�This paper deals with the model anal-ysis of a haos generator. In this proposed systemdisrete value signals and ontinuous value signals areused together and are interating one another. Themain interest of this system is that it allows the gener-ation of haoti signals from a disrete transformationby avoiding the problem of periodiity whih is alwaysenountered in any fully disrete systems. A haotibehavior study of the system is then provided, in whihbifuration phenomena are explained and haoti at-trators are shown.Keywords : Two-dimensional haos generator,swithed dynamial systems, pieewise map.1. IntrodutionChaoti signals seem to be very useful in many ap-pliations, and speially in teleommuniation. It hasbeen shown that haoti sequenes an be used inteleommuniation systems in order to improve per-formane of systems and also inrease the seurity ofthe ommuniations. Attrative properties of haotisignals for this kind of utilization are under study sinea long time and so, haoti signals generators havedrawn many attention.There are many implementations of haos generatorsin the literature. Some of them operate in ontinuoustime suh as systems based on the Chua's iruit (ana-logial iruit), while others are disrete time systemswhih iterate a haoti map (digital iruit). Contin-uous time systems with ontinuous value signals antheoretially produe perfet haoti signals (aperiodisignals). The problem with these systems is that pa-rameters and initial onditions are very di�ult to setwith a great auray, espeially in a noisy environ-ment. Iterative haoti maps an be used to gener-ate haoti signals (haoti sequenes) ; parametersand initial onditions an be exatly known, but thesesystems an only produe disrete values signals andthen lead to periodi sequenes, whih an often be aproblem. Some other systems are based on so-alledswithing iruits [1℄[2℄[3℄ where a lath (disrete value

signal) is used to modify the behavior of a analogialiruit (ontinuous value signal).Our aim is to propose a simple iruit, giving rise toperiodi behaviour as well as haoti one. We wantto analyze and explain the way of obtaining haotisignal from this iruit. In setion 2, we desribe theiruit and introdue the model. In setion 3, bifur-ations permitting to obtain periodi orbits and haosare explained for some parameter values.2. Desription of the iruit

Figure 1: Shemati of the iruitThe proposed haos generator is a quite simple ir-uit, very similar to those disussed in [1℄ and [3℄.The main di�erene is that the proposed iruit is atwo-dimensional haos generator, i.e., with two ou-pled state variables. So, the proposed haos generatorin �gure 1 onsists of an R-S �ip-�op whih permitsto hange the position of two swithes simultaneously.Depending on the position '1' or '0' of the swithes,two apaitor-resistane iruits Cx-Rx and Cy-Ry aresupplied with DC voltage soures Vx and Vy respe-tively, or onneted to the ground. State variables ofthe system are the two voltages apaitor vx(t) and
vy(t). At every lok period T , the �ip-�op is set and
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then the swithes position is '1'. When one of the a-paitane voltages reahes the referene value Vref , thetwo swithes are turned toward their position '0'. So,aording to the swithes position, the two apaitorsare simultaneously harging or disharging.At the nth rising edge of the lok, the two statevariables are given by vx(nT ) and vy(nT ), and the a-paitors start harging. Then, it requires the duration
t
(n)
x = RxCx ln

(Vx−vx(nT )
Vx−Vref

) to the voltage apaitor
vx(t) to reah Vref and, similarly it requires the dura-tion t

(n)
y = RyCy ln

(Vy−vy(nT )
Vy−Vref

) to the voltage apai-tor vx(t) to reah Vref . Then three ases an happen :1. none of the two states variables have reahedthe referene voltage Vref before the next ris-ing edge of the lok. This ase appears when
t
(n)
x < T and t

(n)
y < T , or equivalently when

vx(nT ) < Vx − (Vx − Vref )e
T

RxCx and vy(nT ) <

Vy − (Vy − Vref )e
T

RyCy . Then no swith has o-urred and values of the state variables at the
(n + 1)th rising edge are :
{

vx((n + 1)T ) = Vx + (vx(nT ) − Vx)e−
T

RxCx

vy((n + 1)T ) = Vy + (vy(nT ) − Vy)e
− T

RyCy (1)2. voltage apaitor vx(t) reahes the referene volt-age Vref before vy(t) an do it and before thenext rising edge. It happens when vx(nT ) ≥

Vx−(Vx−Vref )e
T

RxCx and when t
(n)
x ≤ t

(n)
y . Thenthe two swithes are turned to '0' at time nT +t

(n)
xand values of the state variables at the (n + 1)thrising edge are :















vx((n + 1)T ) = Vref
Vx−vx(nT )

Vx−Vref
e−

T
RxCx

vy((n + 1)T ) =
(

Vy

(Vx−vx(nT )
Vx−Vref

)

RxCx
RyCy − Vy + vy(nT )

)

e
− T

RyCy(2)3. voltage apaitor vy(t) reahes the referene volt-age Vref before the next rising edge. This aseis the analogous of the previous one. It happenswhen vy(nT ) ≥ Vy − (Vy − Vref )e
T

RyCy and when
t
(n)
x ≥ t

(n)
y . Then the two swithes are turnedto '0' at time nT + t

(n)
y and values of the statevariables at the (n + 1)th rising edge are :



















vx((n + 1)T ) =
(

Vx

(Vy−vy(nT )
Vy−Vref

)

RyCy
RxCx − Vx + vx(nT )

)

e−
T

RxCx

vy((n + 1)T ) = Vref
Vy−vy(nT )
Vy−Vref

e
− T

RyCy (3)For simpliity in the rest of this work only a speialon�guration of this iruit will be studied, when Vx =

Vy . Let now de�ne the normalized parameters of themodel :
α = Vx

Vref
with α > 1

µ =
RyCy

RxCx
with µ > 0

δ = e−
T

RxCx with 0 < δ < 1

(4)Normalized state variables are given suh that :
xn = vx(nT )

Vref
with 0 ≤ xn ≤ 1

yn =
vy(nT )

Vref
with 0 ≤ yn ≤ 1

(5)Let us de�ne the following urves in [0, 1]2:
LC1

−1 : xn = xb

LC2
−1 : yn = yb

LC3
−1 : ∆(xn, yn) = 0

(6)where xb = α + 1−α
δ , yb = α + 1−α

δ1/µ , ∆(xn, yn) =
(

yn−α
1−α

)µ
− xn−α

1−α , and the following domains in [0, 1]2:
D1 = {(xn, yn)/xn ≤ xb and yn ≤ yb}
D2 = {(xn, yn)/xn > xb and ∆(xn, yn) > 0}
D3 = {(xn, yn)/yn > yb and ∆(xn, yn) ≤ 0}.

(7)Then the iruit model is given by the map T , whihis de�ned as follows :if (xn, yn) ∈ D1, T (xn, yn) =

{

α + (xn − α)δ

α + (yn − α)δ1/µif (xn, yn) ∈ D2, T (xn, yn) =

{

xn−α
1−α δ

(

α
(

xn−α
1−α

)1/µ
− α + yn

)

δ1/µif (xn, yn) ∈ D3, T (xn, yn) =

{
(

α
(

yn−α
1−α

)µ
− α + xn

)

δ
yn−α
1−α δ1/µ (8)We shall denote T|D1

by T1 (respetively T|D2
by T2and T|D3

by T3. In the phase plane (xn, yn), the urves
LC1

−1, LC2
−1 and LC3

−1 de�ne the swithing lines andare also alled ritial urves (see �gure 2).

Figure 2: In the phase plane (xn, yn), swithing lines
LCi

−1, i = 1, 2, 3 and domains Di, i = 1, 2, 3.
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3. Analysis of bifurations and route to haosIn this setion, we propose to analyse bifurationsourring in the iruit modeled by (8). The modelis given by a ontinuous pieewise smooth map, sowe know that the ritial urves LCi
−1, i = 1, 2, 3and their images by T permit to explain some of thebifurations that our [5℄. We have hosen to �x αand to study the parameter plane (µ, δ). The �gure 3is obtained by simulations in the parameter plane(µ, δ) when α = 1.1 and the �gure 4 when α = 1.01.Eah olored part orresponds to the existene of atleast a periodi orbit, whih order k orresponds tothe indiated olour on the �gure (blue : k=1, red: k=2,...). The blak olour orresponds to ordergreater than 14 or to haoti attrators. We proposeto explain bifurations by onsidering �rst the �xedpoints, then the evolution of periodi orbits of ordergreater than 1 when µ < 1 and µ > 1.

Figure 3: Parameter plane (µ, δ), α = 1.1. Only at-trative periodi orbit of order 1 and 3 exist.

Figure 4: Parameter plane (µ, δ), α = 1.01. Attrativeperiodi orbits of order 1 to 6 exist.

3.1. Study of �xed pointsTo �nd the �xed points, we have to determine the�xed points of eah determination of T (i.e. T1, T2,
T3) and to verify if they belong or not to the domainon whih eah Ti, i = 1, 2, 3 is de�ned.
• The �xed point of T1 is denoted by X1(x1 =

α, y1 = α). This point does not belong to D1.It is alled a virtual �xed point [5℄.
• µ > 1The �xed point of T2 is denoted by X2(x2, y2):

x2 = αδ
α+δ−1 , y2 = (( α

α+δ−1 )
1

µ − 1) αδ
1

µ

1−δ
1

µ
(9)

X2 belongs to D2 when µ > 1. The eigenvaluesof the Jaobean matrix of T2 are :
λ1 = δ

1−α , λ2 = δ
1

µ (10)It is easy to hek that λ1 < 0 and λ2 ∈]0, 1[. A�ip bifuration ours for X2 when δ = α−1. Thisurve orresponds to the straight line between theblue and red part in the parameter plane (µ, δ)(Figures 3 and 4). δ is less than 1, so it impliesthat α must be less than 2 in order to obtain a �ipbifuration for the �xed point X2. An attrativeorder 2 yle exists when α − 1 < δ until it be-omes repulsive by undergoing a �ip bifuration.
• µ < 1The �xed point of T3 is denoted by X3(x3, y3):

x3 = αδ
1−δ (( α

α+δ
1

µ −1
)µ − 1), y3 = αδ

1

µ

α+δ
1

µ −1(11)
X3 belongs to D3 when µ < 1. The eigenvaluesof the Jaobean matrix of T3 are :

λ1 = δ, λ2 = δ
1

µ

1−α
(12)It is easy to hek that λ2 < 0 and λ1 ∈]0, 1[. A�ip bifuration ours for X3 when δ

1

µ = α − 1.The same remarks hold for the �xed point X3than for X2 : the �ip bifuration an be obtainedonly if α < 2. An attrative order 2 yle existswhen α − 1 < δ
1

µ until it undergoes itself a �ipbifuration by border-ollision.Let onsider now some of the bifurations ourringfor periodi orbits of order greater than 2. This partis under study and will be developed in future works.3.2. Case : µ > 1By onsidering analytial and numerial studies, wean onjeture the following properties :
- 438 -



Figure 5: Chaoti attrator in the (xn, yn) plane α =
1.1, δ = 0.5, µ = 1.95. The haoti attrator is loatedin the domains D1 and D2.
• The points of an order k yle belong to D1 and

D2, so the points are exhanged by T1 and T2, themap T3 is not involved in this ase. k − 1 pointsbelong to D1, one belongs to D2. One point of anorder k yle is a �xed point of the map T k−1
1 T2.

• The study of the eigenvalues of the Jaobean ma-trix of T k−1
1 T2 permits to show that an order kyle undergoes a �ip bifuration when δk = α−1.

• The order k yles appear when one point is ross-ing a swithing urve LCi
−1, i = 1, 2, 3. This kindof bifuration is alled a border ollision. Chaotiattrators also appear by border ollision [5℄. See�gure 5 for a single haoti attrator and �gure 6for an order 6 yli haoti attrator.3.3. Case : µ < 1The same properties our, but regarding the maps

T1 and T3 instead of T1 and T2. In this ase, the�ip bifurations of order k yles are obtained when
δ

k
µ = α− 1. Chaoti attrators also appear by borderollision.4. ConlusionWe have proposed a iruit giving rise to haoti be-haviour and a model by the way of a two-dimensionalpieewise smooth map. We an determine the pa-rameters giving rise to periodi or haoti behavior.The model depends upon three parameters ; we have�xed the parameter α and studied the parameter plane(µ, δ). It is noteworthy to remark that haos an ap-pear in the iruit when the parameter α is slightlygreater than 1, when the voltage soure is slightlygreater than the voltage referene ; if α beomesgreater than 2, only �xed points exist. The iruit

Figure 6: Order 6 yli haoti attrator in the
(xn, yn) plane, α = 1.1, δ = 0.47, µ = 1.5.that we have proposed ould be used as a haoti gen-erator in di�erent kinds of appliations (seure trans-mission,...).AknowledgmentsThis work was supported by the Frenh projetANR05-RNRT02001 ACSCOM ("Apport du Chaosdans la Séurité des systèmes Communiants Optiqueset Mobiles"). Referenes[1℄ T. Kousaka, T. Kido, T. Ueta, H. Kawakami,M. Abe, �Analysis of Border-Collision Bifurationin a Simple Ciruit,� IEEE International Sympo-sium on Ciruits and Systems (ISCAS'00), Geneva,Switzerland, May 2000.[2℄ T. Kousaka, Y. Yasuhara, T. Ueta, H. Kawakami,�Experimental Realization of Controlling Chaos inthe Periodially Swithed Nonlinear Ciruit,� Int.J. Bifuration and Chaos, Vol. 14, No. 10, pp. 3655-3660, 2004.[3℄ S. Mandal, S. Banerjee, �An Integrated CMOSChaos Generator,� National Conferene on Non-linear and Dynamis, Indian Institute of Tehnol-ogy, Deember 2003.[4℄ S. Banerjee, P. Ranjan, C. Grebogi, �Bifurationsin 2D pieewise smooth maps - theory and applia-tions in swithing iruits,� IEEE Trans. CiruitsSystems I, 47, 633-643, 2000.[5℄ I. Sushko, L. Gardini, �Center bifuration for two-dimensional border-ollision normal form,� Int. J.Bifuration and Chaos, Vol. 18, No. 4, pp. 1029-1050, 2008.
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