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Abstract—In this study, we consider the several types
of circuit models which are that odd and even polygonal
oscillatory networks are coupled by sharing a branch. We
apply the theoretical analysis by using the whole power
consumption to solve the phase difference between the ad-
jacent oscillators. Furthermore, we discuss the general net-
work model which is a number of polygonal oscillatory
networks are coupled by multiple branches.

1. Introduction

Coupled oscillatory systems are good models to express
essential role of high-dimensional nonlinear phenomena
occurring in the field of natural sciences. Endo et al. have
presented the details of a theoretical analysis and corre-
sponding circuit experiments on electrical circuits oscilla-
tors arranged in a ladder, a ring and in a two-dimensional
array topology [1]-[3]. Moreover, coupled oscillatory sys-
tems can also produce interesting phase patterns, including
wave propagation, clustering and complex patterns [4].

On the other hand, there are several types of polygonal
network structures (e.g. Honeycomb structure and crystal
structure) in the natural science. Generally, for the studies
of large-scale network using coupled oscillators, a ring, a
ladder and a two dimensional array structure are often in-
vestigated. However, there are not many discussions about
coupled polygonal oscillatory networks by using electrical
oscillators.

In our previous study, synchronization phenomena in
two coupled polygonal oscillatory networks with frustra-
tion was investigated. In this system, odd number of van
der Pol oscillators are connected to every corner of polyg-
onal network and frustration is occurred by the shared
branch. We have confirmed that the phase difference be-
tween the shared oscillators was shifted, then other oscil-
lators synchronized to compensate this phase shift. In or-
der to solve the phase difference in the circuit system, we
focused on the power consumption of the coupling resis-
tors in the whole system and proposed the theoretical anal-
ysis method by finding the minimum value of the power
consumption function. By using computer simulations and
theoretical analysis, we confirmed that coupled oscillators
tended to synchronize to minimize the power consumption
of the whole system [5].

In this study, we consider the circuit models which are
that odd and even polygonal oscillatory networks are cou-
pled by sharing a branch. We apply the proposed theoreti-
cal analysis by using the whole power consumption to solve
the phase difference between the adjacent oscillators. Fur-
thermore, we discuss the general network model which is
a number of polygonal oscillatory networks are coupled by
multiple branches. We expect that the results of this study
contribute to understanding of synchronization phenomena
observed in general complex networks.

2. Coupled Odd-Even Polygonal Oscillatory Networks

First, we investigate the synchronization phenomena in
coupled odd-even polygonal oscillatory systems. We con-
sider the four types of circuit systems as shown in Fig. 1.
Two polygonal oscillatory networks are coupled by sharing
a branch. We call the first and the second oscillators which
are connected to both side of polygonal network “shared
oscillators.”
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Figure 1: Two coupled odd-even number polygonal oscil-
latory networks.

Next, we develop the expression for the circuit equations
of 3 − 4 coupling oscillatory networks as shown in Fig. 2.
The vk − iRk characteristics of the nonlinear resistor are ap-
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Figure 2: Circuit model for 3 − 4 coupling oscillatory net-
works.

proximated by the following third order polynomial equa-
tion,

iRk = −g1vk + g3vk
3 (g1, g3 > 0), (k = 1, 2, 3, 4, 5). (1)

The normalized circuit equations governing the circuit are
expressed as
[kth oscillator]

dxk

dτ
= ε
(
1 − 1

3
xk

2
)
xk − (yak + ybk + yck)

dyak

dτ
=

1
3

{
xk − ηyak − γ(yak + yn)

}
dybk

dτ
=

1
3

{
xk − ηybk − γ(ybk + yn)

}
dyck

dτ
=

1
3

{
xk − ηyck − γ(yck + yn)

}
(k = 1, 2, 3, 4, 5).

(2)

In this equations, γ is the coupling strength, ε denotes the
nonlinearity of the oscillators and yn denotes the current
of neighbor oscillator on coupling resistor. For the com-
puter simulations, we calculate Eq. (2) using a fourth-order
Runge-Kutta method with the step size h = 0.005. The pa-
rameters of this circuit model are fixed as ε = 0.1, γ = 0.1,
η = 0.001.

2.1. Synchronization Phenomena

We investigate phase difference between adjacent oscil-
lators in two coupled polygonal oscillators for four types
of circuit model. The simulation results are summarized in
Table 1. There are three phase difference types as follows;
phase difference between shared oscillators (θ), phase dif-
ference of odd polygonal oscillatory network (ϕNo ), phase
difference of even polygonal oscillatory network (ϕNe ).
Where, No and Ne denote the number of coupled van der
Pol oscillators to odd and even polygonal network, respec-
tively.

From this table, we can see that the coupled oscillators
do not synchronize with No-phase state or anti phase state
in each case. In the case of that the two coupled polyg-
onal oscillatory networks are not coupled, No-phase syn-
chronization could be occurred in the odd polygonal net-
work and anti-phase synchronization could be obtained in

the even polygonal network. By adding some sort of frus-
tration (effect of the sharing branch), the different types of
synchronization can be observed.

Table 1: Phase difference of oscillatory networks (com-
puter simulation)

Circuit Model Phase difference
Odd-Even Shared osc. Odd osc. Even osc.

No-Ne θ ϕNo ϕNe

3-4 138.60 ◦ 109.50◦ 166.70◦

3-6 133.30◦ 112.23◦ 171.11◦

5-4 152.70◦ 141.00◦ 171.00◦

5-6 150.31◦ 142.56◦ 174.15◦

As one example, Fig. 3 shows the time wave forms of the
voltage charged at the capacitance of each oscillator and
Lissajous figures obtained from 3 − 4 coupling network by
using the computer simulation.
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Figure 3: Time wave forms and Lissajous figures observed
in 3 − 4 coupling network. (a) Time wave forms of 1st (red)
and 2nd (black) oscillators. (b) Time wave forms of 1st (red) and
3rd (black) oscillators. (c) Time wave forms of 1st (red) and 4th
(black) oscillators. (d) Lissagous figure with 1st and 2nd oscil-
lators. (e) Lissagous figure with 1st and 3rd oscillators. (f) Lis-
sagous figure with 1st and 4th oscillators.

2.2. Theoretical Analysis

In this section, we apply the proposed theoretical analy-
sis [5] to solve the phase difference of the shared oscillators
and the other combination oscillators.

We assume three points as following. First, the phase
difference between shared oscillators is θ. Second, the
phase difference of the coupled oscillators in odd polyg-
onal network is described by Eq. (3).

ϕNo = π −
θ

No − 1
. (3)
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Third, the phase difference of the coupled oscillators in
even polygonal network is described by Eq. (4).

ϕNe = π −
π − θ

Ne − 1
. (4)

In the case of No − Ne coupling system, the power con-
sumption of the whole system is expressed by following
equation.

P =
1

2π

∫ 2π

0
{sinωt + sin(ωt + θ)}2dt

+
No − 1

2π

∫ 2π

0

{
sinωt

+ sin
(
ωt + π − θ

No − 1

)}2
dt

+
Ne − 1

2π

∫ 2π

0

{
sinωt

+ sin
(
ωt + π − π − θ

Ne − 1

)}2
dt, (5)

where the amplitue of current is set to 1 and the coupling
resistance is fixed with R = 1.

P = 1 + cos θ + (No − 1){1 + cos(π − θ/(No − 1))}
+ (Ne − 1){1 + cos(π − (π − θ)/(Ne − 1))}. (6)

The extreme value is solved by Eq. (8).

dP
dθ
= − sin θ + sin

(
π − θ

No − 1

)
+ sin

(
π − π − θ

Ne − 1

)
. (7)

When dP
dθ = 0 is satisfied, θ is phase difference of the

shared oscillators to minimize the power consumptions
of the whole system. Table 2 summarizes the result of
numerically-calculated phase difference by using Eq. (8).
We confirm that the value of phase difference obtained
from the theoretical analysis has similar value with the
computer simulation results (see. Table 1).

Table 2: Phase difference of oscillatory networks (theoreti-
cal analysis)

Circuit Model Phase difference
Odd-Even Shared osc. Odd osc. Even osc.

3-4 137.42 ◦ 111.29◦ 165.81◦

3-6 131.69◦ 114.16◦ 170.34◦

5-4 152.32◦ 141.92◦ 170.77◦

5-6 150.02◦ 142.50◦ 174.00◦

As an example, Fig. 4 shows the graphs of Eqs. (6), (7)
for 3-6 coupling network. From this figure, we can see that
extreme value of Eq. (6) corresponds to 0 (zero) of Eq. (7).
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Figure 4: Function of power consumption for 3-6 coupling
network.

3. Application for General Networks

We apply the previous theoretical approach to solve
the phase difference of shared branch to the general net-
works. One example of general coupled polygonal network
is shown in Fig. 5.
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Figure 5: One example of general coupled oscillatory net-
works.

Then we can obtain the phase differences ϕ5 and ϕ7 as
described by the following equation.

ϕ5 =
4π − (θ1 + 2θ2)

2
. (8)

ϕ6 = π −
(π − θ1) + 2(π − θ2)

3
. (9)

The power consumption equation is expressed as

P = 6(1 + cos θ1) + 6(1 + cos θ2)

+ 6
(
1 + cos

4π − (θ1 + 2θ2)
2

)
+ 12

(
1 + cos

(π − θ1) + 2(π − θ2)
3

)
. (10)

Figure 6 shows the function of power consumption with
3D plot when θ1 and θ2 are changed from 0 to π. By cal-
culating this function, we obtain θ1 and θ2 which show the
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minimum value of this function. In the range of [0:π], the
minimum value of θ1 and θ2 are 167.30◦ and 152.41◦, re-
spectively.

Table 3 summarizes the phase differences obtained from
the computer simulations and the theoretical analysis using
Eqs. (8)-(10). We confirm that the phase differences of the
theoretical analysis match pretty well to the results of the
computer simulations. We consider that even if calculation
becomes more complex for the asymmetrical system, the
same theoretical analysis can be applied.
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Figure 6: One example of general coupled oscillatory net-
works.

Table 3: Phase difference for general oscillatory networks
Phase Type Phase Difference

Simulation Theory
θ1 167.68◦ 167.30◦

θ2 153.85◦ 152.41◦

ϕ5 122.78◦ 123.94◦

ϕ6 158.40◦ 157.37◦

4. Conclusion

In this study, we have investigated synchronization phe-
nomena in coupled polygonal oscillatory networks with
frustration. By using computer simulations and theoret-
ical analysis, we have confirmed that coupled oscillators
tend to synchronize to minimize the power consumption of
whole system. Investigation of synchronization phenom-
ena observed in coupled chaotic oscillator in the polygonal
networks with frustration is our future work.
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