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Abstract— Hybrid equations are often used in the theoretical
study of nonlinear resistive circuits because they have an easily
analyzed structure. They are also advantageous in the numerical
analysis of nonlinear resistive circuits because they consist of
a small number of variables and are separable. However, the
hybrid equations are seldom used in practical application because
their formulation is difficult. In this paper, we propose a simple
method for formulating the hybrid equations using SPICE. In
the proposed method, we only perform the transient analysis
of SPICE to a linear circuit that is obtained through a small
modification to the original circuit. It is also shown that state
equations of nonlinear dynamic circuits can also be formulated
by the proposed method.

I. I NTRODUCTION

There are several types of equations that describe nonlinear
resistive circuits. Among them, hybrid equations [1, p.291] are
often used in the theoretical study of nonlinear resistive circuits
(such as the existence, uniqueness, and stability of solutions
[1]–[5] or proving the global convergence of homotopy meth-
ods [6]) because they have an easily analyzed structure. Hybrid
equations are also advantageous in the numerical analysis of
nonlinear resistive circuits (such as piecewise-linear analysis
[7],[8] and finding all solutions [9]–[12]) because they consist
of a small number of variables and are separable.

However, the hybrid equations are seldom used in practical
applications because their formulation is difficult [1]. In circuit
simulation, modified nodal equations are widely used because
they can be easily formulated. In the circuit simulator SPICE,
the modified nodal equations are automatically formulated
from the netlists. Hence, designers need not formulate them
by hand or by their own programs. Conversely, if we can
easily formulate the hybrid equations “using SPICE only,”
“without complicated theory and programming,” then the
hybrid equations may be widely used as practical equations.

In this paper, we propose a simple method for formulating
the hybrid equations using SPICE. In the proposed method,
we only perform the transient analysis of SPICE to a linear
circuit that is obtained through a small modification to the
original circuit. Hence, complicated theory and programming
are not necessary. Note that the proposed method is a kind
of the SPICE-oriented approach [13]. In this paper, it is also
shown that state equations of nonlinear dynamic circuits can
also be formulated by the proposed method.
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Fig. 1. Extraction of nonlinear resistors to form a linearn-port.

II. H YBRID EQUATION

In this section, we first review the hybrid equations briefly.
For details, see [1] and [3].

Consider a nonlinear resistive circuitN that consists ofn
nonlinear resistors (coupled to each other or uncoupled), linear
resistors, constant independent sources, and linear controlled
sources. Letva and ia be the vectors of branch voltages
and currents, respectively, of the voltage-controlled nonlinear
resistors, and letvb and ib be the vectors of branch voltages
and currents, respectively, of the current-controlled nonlinear
resistors. As shown in Fig. 1(a), we first extract all nonlinear
resistors and replacing them by ports. Then, the remaining
n-port as shown in Fig. 1(b) (that contains only linear re-
sistors, linear controlled sources, and independent sources) is
described by a hybridn-port representation of the form:

[
ia

vb

]
+ H

[
va

ib

]
− s = 0, (1)

where H is an n × n matrix called the hybrid matrix and
s is an n-dimensional vector accounting for the independent
sources. Such a hybrid representation exists if, and only if,
the voltage ports, together with the internal voltage sources
do not form any loops, and the current ports, together with
the internal current sources do not form any cut-sets [1],[3].
It has been shown that there is little loss of generality in this
assumption [1], and a large class of nonlinear resistive circuits
has the hybrid representation of the form (1).

Let the constitutive relations of the nonlinear resistors across

the ports be represented byy = g(x) wherex =
[

va

ib

]
and

y =
[

ia

vb

]
. Combining this equation with the above hybrid
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Fig. 2. Replacement of nonlinear resistors by independent voltage sources.

representation, we obtain the hybrid equation:

g(x) + Hx− s = 0. (2)

Thus, the hybrid equations are equations whose variables are
branch voltages and/or currents of nonlinear resistors.

However, formulating the hybrid equations is quite involved
as shown in Chapter 6 of [1]; it requires selecting a tree
that satisfies some conditions, producing a large number of
equations, and eliminating unnecessary variables by matrix
operations.

III. F ORMULATING HYBRID EQUATIONS USING SPICE

In this section, we first propose a simple method for
formulating the hybrid equations using the DC analysis of
SPICE. Then, we propose a more efficient method using the
transient analysis of SPICE. For the simplicity of discussion, in
this section we assume that all nonlinear resistors are voltage-
controlled. We will add a simple explanation in the case that
nonlinear resistors are current-controlled at the end of this
section.

A. Method Using DC Analysis

Assume that the nonlinear resistive circuitN can be de-
scribed by a hybrid equation of the form (2). We first replace
each nonlinear resistor inN by an independent voltage source
as shown in Fig. 2 and consider the linear circuitN̂ thus
obtained. We will call these independent voltage sources as
replacedvoltage sources. For a bipolar transistor, there are
two ways of this replacement; one is replacing the transistor
by two independent voltage sources, and the other is modeling
the transistor by the Ebers-Moll model and then replacing
the diodes in the Ebers-Moll model by independent voltage
sources (see Fig. 2). The resulting hybrid equations are of
course different [3, p.41]. The former way is often used when
the transistors are modeled by non-separable models such as
the Gummel-Poon model. Letv = (v1, v2, · · · , vn)T and
i = (i1, i2, · · · , in)T be the vectors of the branch voltages and
currents, respectively, of the replaced voltage sources. Then,
(1) becomes

i + Hv − s = 0. (3)

Now we set all the replaced voltage sources to 0V. Then,
substitutingv = 0 in (3), we obtain

i = s. (4)

Hence, the vectors is obtained from the branch currents of
the replaced voltage sources. Such a circuit where nonlinear
resistors of the original circuit are replaced by independent
voltage sources with value zero will be called thes-circuit.

Consider again the linear circuit̂N where n nonlinear
resistors of the original circuitN are replaced by independent
voltage sources. We first set “all the independent sources that
were contained inN ” to 0. Then,s = 0 holds. We next set
only thejth voltage source of the replaced voltage sources to
−1V, and set the other replaced voltage sources to 0V. Then,
v = (0, · · · ,−1j , · · · , 0)T holds. Such a circuit will be called
the hj-circuit. From (3), we have

i = hj , (5)

where hj denotes thejth column vector of the matrixH
[namely,H = (h1, · · · ,hj , · · · ,hn)]. Hence, the vectorhj

is obtained from the branch currents of the replaced voltage
sources of thehj-circuit.

Thus, we can obtain the vectors and the matrixH by
performing the DC analysis of SPICE to thes-circuit and the
hj-circuits (j = 1, 2, · · · , n). In SPICE, branch currents of
voltage sources are automatically defined as variables, and we
can obtain their values from the results of DC analysis.

This is the method using DC analysis of SPICE. Consider-
ing the structure of (2), this method is almost trivial.

B. Method Using Transient Analysis

In the previous method, we have to perform the DC analysis
to thes-circuit and thehj-circuits(j = 1, 2, · · · , n). However,
performing the DC analysisn+1 times is a troublesome task
whenn is large. In this section, we propose a more efficient
method using the transient analysis of SPICE.

We first replace each independent source that was contained
in N by a pulse source that takes the same value as that of
the independent source on the time interval[0, 1] and 0 on
[1, n + 1]. Then, replace each nonlinear resistor by a pulse
voltage source where thejth pulse voltage source takes the
value−1V on [j, j + 1] and 0V on other time intervals. Such
a linear circuit will be denoted byN̂p. If we perform the
transient analysis tôNp, then virtually DC analysis to thes-
circuit is performed on the time interval[0, 1] and DC analysis
to thehj-circuit is performed on[j, j + 1] (j = 1, 2, · · · , n).
Hence, we can obtain the hybrid equations from the waveforms
of the branch currents of the replaced pulse voltage sources.

In this method, we perform the transient analysis to a linear
resistive circuit only once. Hence, it is much simpler than the
method using DC analysis. If we already have the netlist of
the original circuitN , then we can obtain the netlist of̂Np

through a small modification to that ofN .
In the above discussion, we have assumed that all nonlinear

resistors ofN are voltage-controlled. In the case that nonlinear
resistors are current-controlled, we replace each nonlinear
resistor by a pulse current source and perform the similar
procedure. Then, the vectors and the matrixH are obtained
from the branch voltages of the pulse sources.
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Fig. 3. Example circuit 1.
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Fig. 4. Branch voltages of the pulse voltage sources (Example 1).
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Fig. 5. Branch currents of the pulse voltage sources (Example 1).

Example 1: Consider the simple transistor circuit shown in
Fig. 3 [3] whereE1 = 5, E2 = 12, R1 = 100K, andR2 = 1K.
We use the Ebers-Moll model[

ie
ic

]
=

[
1 −0.5

−0.99 1

] [
g1(ve)
g2(vc)

]
(6)

and consider the diodes in the Ebers-Moll model as nonlinear
resistors. Replace the independent voltage sources and the
nonlinear resistors by pulse voltage sources with the branch
voltages as shown in Fig. 4 and obtain the linear circuitN̂p.
Performing the transient analysis of SPICE tôNp, we obtain
the branch currents of the pulse voltage sources as shown in
Fig. 5. From the values on the time interval[0, 1], s is obtained,

+u

R

L

+

-

( )t ( )tx1 2 ( )txC-

1 R2

Fig. 6. Example circuit 2.

and from the values on the time intervals[1, 2] and [2, 3], h1

andh2 are obtained, respectively. Hence, the hybrid equations
are given as follows:
»

g1(ve)
g2(vc)

–
+

»
1.009× 10−3 −9.900× 10−4

−1.980× 10−7 1.980× 10−5

– »
ve

vc

–

　−
»

1.198× 10−2

−1.396× 10−4

–
=

»
0
0

–
. (7)

IV. FORMULATING STATE EQUATIONS USING SPICE

In this section, we show that state equations of nonlinear
dynamic circuits containing capacitors and/or inductors can
also be formulated by the proposed method.

We first consider a linearRLC circuit with l inputs andm
capacitors and/or inductors. Then, the state equations can be
written as follows [1]:

Cẋ(t) = Ax(t) + Bu(t), (8)

wherex(t) is anm-dimensional variable vector consisting of
the branch voltages of capacitors and/or the branch currents
of inductors,A is an m ×m matrix, B is an m × l matrix,
C is an m × m diagonal matrix whose diagonal elements
take the values of the capacitances and/or inductances,u(t) is
an l-dimensional vector accounting for the independent and/or
time-dependent sources, andt denotes the time.

In the proposed method, we first replace the capacitors and
inductors by pulse voltage sources and pulse current sources,
respectively, where the value of thejth pulse source is1 on
the time interval[j − 1, j] and0 on other time intervals(j =
1, 2, · · · ,m). Then, we replace thejth independent or time-
dependent source by a pulse source with the value1 on the
time interval[m + j − 1,m + j] and0 on other time intervals
(j = 1, 2, · · · , l), and consider the linearresistivecircuit N̂p

thus obtained. By performing the transient analysis toN̂p, we
can obtain the matricesA andB.

Example 2: Consider the linearRLC circuit shown in
Fig. 6, whereC = 1, L = 1, R1 = 2, and R2 = 3.
Performing the transient analysis of SPICE to the linear
resistive circuitN̂p, we obtain the branch currents/voltages
of the pulse voltage/current sources, respectively, as shown in
Figs. 7 and 8. Hence, the state equations are given as follows:
[

ẋ1(t)
ẋ2(t)

]
=

[ −0.5 −1.0
1.0 −3.0

] [
x1(t)
x2(t)

]
+

[
0.5
0

]
u(t).

(9)
We next consider a nonlinear dynamic circuit withl inputs,

m capacitors and/or inductors, andn nonlinear resistors. Re-
place the voltage-controlled nonlinear resistors and capacitors
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Fig. 7. Branch voltages or currents of the pulse sources (Example 2).
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Fig. 8. Branch current or voltage of the pulse sources (Example 2).

by pulse voltage sources, the current-controlled nonlinear
resistors and inductors by pulse current sources, and the
independent and/or time-dependent sources by pulse sources
in a similar way and obtain a linear circuit̂Np. By performing
the transient analysis tôNp, we obtain the state equations of
the form:

Cẋ(t) = A11x(t) + A12y(t) + B1u(t) (10)

g[y(t)] = A21x(t) + A22y(t) + B2u(t), (11)

where x(t) is an m-dimensional variable vector consisting
of branch voltages of capacitors and/or branch currents of
inductors,y(t) is ann-dimensional variable vector consisting
of branch voltages and/or currents of nonlinear resistors,A11,
A12, A21, andA22 arem×m，m× n，n×m，andn× n
matrices, respectively, andB1 and B2 are m × l and n × l
matrices, respectively.

From (11), an implicit functiony(t) = G(x(t), t) is de-
fined. Hence, (10) can be considered as a state equation of the
form Cẋ(t) = f(x(t), t) that contains an implicit function.
Thus, using the idea of the multilevel Newton algorithm in
[14], we can apply various implicit numerical integration
methods (such as the implicit Runge-Kutta method) to the
nonlinear state equations.

Example 3: We applied the proposed method to the DC
power supply circuit shown in Fig. 9 [15]. By the topological
restriction of SPICE, we considered that the diode is current-
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Fig. 9. Example circuit 3.

controlled. Applying the proposed method, we obtain the state
equations as follows:




10−6 ẋ1

10−3 ẋ2

10−1 ẋ3

10−3 ẋ4

g1(y1)


 =



−0.2 −0.2 0 0 −1
−0.2 −0.2 −1 0 0

0 1 0 −1 0
0 0 1 −0.001 0
1 0 0 0 0







x1

x2

x3

x4

y1




+




0.2
0.2
0
0
0


 10 sin 120πt. (12)
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