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Abstract—In our previous study, we considered a model
of unidirectionally coupled driven and driving neurons, and
obtained that the neurons are synchronized in low or high
firing frequency by the inhibitory or excitatory coupling,
respectively. In this study, we add the third neuron uni-
directionally connected to the above two neurons. This
neuron drives other neurons. We study synchronization ob-
served in a system consisting of driving and driven neurons.
When the synapse is inhibitory or excitatory, the neurons
have a wide parameter region in which stable synchronous
firing is observed as the external DC current of the driving
neuron becomes small or large, respectively.

1. Introduction

Neurons have repetitive firing patterns by external stim-
ulus. Neurons are classified into two types : class I and
class II neurons, by the onsets of firing [1]. The oscillation
of the former is associated with a saddle-node bifurcation
that shows zero frequency at the bifurcation point. On the
other hand, that of the latter is related to an Andronov-Hopf
bifurcation exhibiting a finite frequency at the bifurcation
point.

For synchronization of the class I and class II neurons,
systems consisting of the same class neurons have been
investigated. Izhikevich and Ermentrout showed that the
class II neurons easily achieve synchronization [2,3]. How-
ever, Tsuji and coworkers indicated that class I neurons also
have various bifurcation states and many periodic solutions
[4].

However, the combination of different class neurons ex-
ists in real neuronal networks. The interneurons in the neo-
cortex show class I or class II excitabilities. In the networks
of the interneurons illustrated by Beierlein and coworkers,
there are various coupling units of the class I and II neu-
rons with chemical and electrical synapses [5]. According
to White, coupled the same class neurons with an asym-
metrical external DC current have various synchronization
states [6,7]. Hence we studied the synchronization in two
unidirectionally coupled neurons with different classes and
whit asymmetrical inputs, and found that the neurons with
an excitatory or inhibitory synapse have a wide parame-
ter region of synchronization when external DC current of
the driving neuron becomes large or small, respectively [8].

Moreover, we discovered that this phenomenon depends on
the only synapse types.
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Figure 1: Schematic diagram of the coupled neuron model.
gsyn1 and gsyn2 are maximum coupling conductance of the
chemical synapses. Neuron3 drives Neuron1 and Neuron2
by Synapse2. Neuron2 drives only Neuron1 by Synapse1.

In this study, we add the third neuron unidirectionally
connected to the above two neurons. This neuron drives
other neurons as shown in Fig. 1. We study synchroniza-
tion observed in the neurons driven by synaptic currents
with multiple frequencies. Thomas and coworkers found
that the firing of the neuron with the multiple sinusoidal in-
puts is affected by not only their frequencies but also the
powers and phases [9]. However, generically, it is difficult
to analyze synchronization of the neurons driven by exter-
nal forces with multiple frequencies, because the Poincaré
mapping cannot be defined. In our model, we fluctuate the
firing frequency of the neurons by changing the value of ex-
ternal DC currents of driving neurons. As a result, this sys-
tem behaves like a forced system in which external forces’
frequencies are different. We find that when Synapse2 is
inhibitory or excitatory, the neurons have a wide parame-
ter region in which stable synchronous firing is observed as
the external DC current of the Neuron3 becomes small or
large, respectively.

2. Neuron Model

We consider the model as shown in Fig. 1. The Morris-
Lecar equation [10] is applied to the dynamics of a single
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neuron. The membrane potentials of each neuron are de-
scribed as follows:

CM
dV1

dt
= −gl(V1 − Vl) − gCaM∞1(V1 − VCa)

−gkN1(V1 − Vk) + Iext1

+gsyn1α2(Vsyn − V1)
+gsyn2α3(Vsyn − V1) (1)

CM
dV2

dt
= −gl(V2 − Vl) − gCaM∞2(V2 − VCa)

−gkN2(V2 − Vk) + Iext2

+gsyn2α3(Vsyn − V2) (2)

CM
dV3

dt
= −gl(V3 − Vl) − gCaM∞3(V3 − VCa)

−gkN3(V3 − Vk) + Iext3 (3)

where, Iext1-Iext3 are external DC currents for Neuron1-
Neuron3. In this research, Iext1 is fixed as 78.55. gsyn2 and
gsyn3 are the maximum coupling conductance of the chem-
ical synapses, Vsyn2 and Vsyn3 are the reversal potentials of
the chemical synapses. α2 and α3 are the open channels of
the chemical synapses and their dynamics is described by:

dαi

dt
=
βi

τ2
(4)

dβi

dt
= −αi

τ1
− (

1
τ1
+

1
τ2

)βi. (5)

(i = 2, 3)

The solution α[i](t) of Eqs. (4) and (5) with the initial
condition (α[i], β[i]) = (0, 1) at t = 0 is calculated as α[i](t) =
τ1
τ1−τ2 (e−

t
τ1 − e−

t
τ2 ). τ1 and τ2 are respectively the raise and

the decay time constants of the synapse. We fix the values
of τ2 as 2.0[msec](excitatory) and 7.0[msec](inhibitory)
[11]. This synapse model has a synaptic delay fixed as
1[msec]. M∞ and N∞ as functions of the membrane po-
tential V are described as follows:

dNi

dt
=

N∞i − Ni
τNi

(6)

M∞i = 0.5[1 + tanh{(Vi − Va)/Vb)}] (7)
N∞i = 0.5[1 + tanh{(Vi − Vc)/Vd)}] (8)
τNi = 1/[φ cosh{(Vi − Vc)/2Vd)}]. (9)

(i = 1, 2, 3)

The M-L model can be changed between class I and class
II excitabilities by varying the value of the parameter Vc;
the critical point is about Vc = 4.6 [12]. We fix Vc as 2
to obtain the property of class II. The values of the other
parameters are shown in Table 1.

Table 1: Fixed values of system parameters
gCa = 4.0[mS/cm2]

gK = 8[mS/cm2]
gL = 2[mS/cm2]
VCa = 120[mV]
VK = −80[mV]
VL = −60[mV]
Va = −1.2[mV]
Vb = 18[mV]

Vd = 17.4[mV]
CM = 20[µF/cm2]
φ = 1/15[s−1]

g[1]
s = 20[mS/cm2]
τ1 = 0.5[msec]

3. Result

In this research, we assume that the coupling conduc-
tance of Synapse2 gsyn2 is 0 ≤ gsyn2 ≤ 5. We change the
external DC current of Neuron3 Iext3. The coupling con-
ductance of Synapse1 gsyn1 is fixed as 5. The external DC
current of Neuron2 Iext2 is fixed as 76 or 80, these are a lit-
tle smaller or larger value than Iext1. We use the algorithms
in [13] and [14] for calculation of bifurcation sets.

3.1. Synapse2 is inhibitory

Figures 2(a) to 2(d) are two-parameter bifurcation dia-
grams when Synapse2 is inhibitory. The horizontal axis is
the external DC current of Neuron3 Iext3, and the vertical
axis is the synaptic conductance gsyn2. In these figures,
the solid curves denote the saddle-node bifurcation, and
we can observe stable synchronized firing in the shaded ar-
eas. In Figs. 2(b)-2(d), the shaded regions called Arnold’s
tongue touch the horizonal axis at the value of Iext2. In Fig-
ure 2(a)(Iext1=78.55 and Iext2=76), a parameter region does
not touch the horizonal axis. In gsyn2=0.0, Neuron1 and
Neuron2 easily achieve synchronization as Iext1≤Iext2, be-
cause of the excitatory coupling between these neurons[8].
Hence, the neurons cannot be synchronized when the value
of the coupling conductance of Synapse2 is small.

These figures show that the neurons have a wide param-
eter region in which stable synchronous firing is observed
when the external DC current of the Neuron3 is less than
that of Neuron2. Decreasing the external DC current of
Neuron3 means that the system has a low firing frequency.
Hence the neurons easily archive synchronization in a low
firing frequency.

We show Fig. 3, a bifurcation diagram for gsyn1 = 0.0,
to consider the effect of only Synapse2 on synchronization.
We can observe that three neurons synchronize in a shaded
area. The neurons have a wider parameter region in which
stable synchronous firing is observed when the external DC
current of the Neuron3 is smaller. We can also observe the
similar shape of a parameter region in Fig. 2. Hence, the
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Figure 2: Bifurcation diagrams when Synapse2 is inhibitory. Synapse1 is excitatory ((a) and (b)) or inhibitory ((c) and
(d)).

unidirectionally coupling between Neuron 3 and Neuron1
or Neuron3 and Neuron2, is an important factor to decide
this synchronization feature. Moreover, in the parameter
region as gsyn2 is small, we observe that the neurons do not
synchronize, or that only two neurons synchronize (Neu-
ron3 and Neuron1 or Neuron3 and Neuron2).
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Figure 3: Bifurcation diagram for gsyn1 = 0.0 and Iext2=80.

3.2. Synapse2 is excitatory

We obtain Figure 4 by analyzing the model as shown in
Fig. 1 for excitatory Synapse2. The Arnold’s tongue struc-
ture surrounded by the saddle-node bifurcations can be ob-
serve in Figs. 4(b)-4(d). Figures 4(a) to 4(d) show that
the neurons have a wide parameter region in which stable
synchronous firing is observed when external DC current

of the Neuron3 becomes large. Neuron3 has a high fir-
ing frequency by increasing the external DC current, so the
neurons easily archive synchronization in a high firing fre-
quency.

Figure 5 is a bifurcation diagram for gsyn1 = 0.0 to ex-
plain the effect of only Synapse2 on synchronization. This
figure shows that the neurons have a wider parameter re-
gion in which stable synchronized firing is observed when
external DC current of Neuron3 is large. This shape of a
parameter region is similar as shown in Fig .4.

4. Conclusion

In this study, we have investigated coupled three neurons
model as shown in Fig. 1. We find that when Synapse2
is the inhibitory or excitatory chemical synapse, the neu-
rons easily achieve synchronization in a low or high firing
frequency, respectively. These synchronization phenom-
ena are depend on the synapse types of a driving neuron
(Neuron3), and are similar to the synchronization of uni-
directionally coupled system in our previous study. How-
ever, in case of small value on the coupling conductance
of Synapse2, the type of Synapse1 affects the synchroniza-
tion.

Studying systems consisting of class I neurons or involv-
ing both classes neurons, and considering the physiological
meaning of these phenomena will be studied as future prob-
lems.
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Figure 4: Bifurcation diagrams when Synapse2 is excitatory. Synapse1 is excitatory ((a) and (b)) or inhibitory ((c) and
(d)).
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Figure 5: Bifurcation diagram for gsyn1 = 0.0 and Iext2=80.
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