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Abstract—In this study, we investigate the synchroniza-
tion phenomenon observed in two coupled tetrahedral os-
cillators sharing a face. We observe the several types of
synchronization phenomena by changing the parameters.
Furthermore, we investigate the effect of the initial condi-
tions.

1. Introduction

Synchronization is one of the most typical natural phe-
nomena, in particular, the cardiac heartbeat is well known
as the example of the synchronization phenomena. Syn-
chronization phenomena are one of the nonlinear phenom-
ena, and they can be expressed by using coupled oscillators.
Coupled oscillatory systems are suitable model to indicate
high dimensional nonlinear phenomena in the natural sci-
ence fields. Therefore investigations of the coupled oscil-
latory systems are reported in various research fields [1]-
[7]. Various coupled oscillators were proposed, and the part
of the mechanism of the non-linear phenomenon has been
elucidated until now. We can see that coupled oscillatory
systems produce interesting phase wave patterns, including
wave propagation, clustering and complex patterns. How-
ever, synchronization phenomena of the oscillators have
not been analyzed enough yet. Hence, we need to inves-
tigate the case of more complicated synchronization phe-
nomena to explore high dimensional nonlinear phenomena.

Here, van der Pol oscillators were coupled in various
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Figure 1: Coupled van der Pol oscillators. (a) Three cou-
pled oscillator. (b) Four coupled oscillator.

form and were investigated about their synchronization
phenomena [8], [9]. And we have studied three coupled
oscillatory systems with a ring topology [12] as shown in
Fig. 1(a). In this circuit system, each oscillator was cou-
pled by an inductor and the number of coupled oscillators
was an odd number. And then the coupled oscillators could
not synchronize with in/anti-phase states. In other words,
three-phase synchronization (phase shift: 120◦) is obtained
for the case of three oscillators by the effect of frustration.
However, the three-phase synchronization was always ob-
served stably in that system. In our previous study, we
have investigated several kinds of interesting synchroniza-
tion phenomena in coupled oscillatory system which has
stronger frustrations. We have researched four coupled van
der Pol oscillators in the regular tetrahedron form as shown
in Fig. 1(b). By computer simulation, we found that the
phase difference between adjacent oscillators changed and
the synchronization was destroyed after the adjacent oscil-
lators synchronize with anti-phase. In other words, this
circuit model has the feature such as repeated anti-phase
synchronous and asynchronous.

The another study, synchronization phenomena in two
coupled triangular oscillatory networks sharing a branch
was investigated in [13]. In this case, we could observed
synchronization that the phase difference of sharing branch
is in-phase (phase difference: 0◦), and the other one be-
tween adjacent oscillators are synchronized with anti-phase
(phase difference: 180◦).

In this study, we investigate the synchronization phe-
nomena of oscillatory model which is coupled two tetra-
hedrons with sharing a triangular face as shown in Fig. 2.
In addition, we calculate the phase differences between the
adjacent oscillators in coupled van der Pol oscillators.
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Figure 2: Coupled oscillator in tetrahedron form.
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Figure 3: Circuit model with double tetrahedrons. (a) Con-
ceptual circuit model. (b) Coupled structure.

2. Circuit Model

The circuit model is shown in Fig. 3(a). In this circuit
model, two tetrahedrons oscillators are coupled by the tri-
angular face and the fourth and the fifth oscillators have
no connection. In the computer simulations, we assume
that thevk − iRk characteristics of nonlinear resistor in each
oscillator is given by the following third order polynomial
equation.

iRk = −g1vk + g3vk3 (g1,g3 > 0),
(k = 1,2, 3,4,5).

(1)

[First oscillator]

dx1

dτ
= ε(1− x12)x1 − (ya1 + yb1 + yc1 + yd1)

dya1
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}
.

(2)

[Second oscillator]

dx2

dτ
= ε(1− x22)xk − (ya2 + yb2 + yc2 + yd2)

dya2

dτ
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}
.

(3)

[Third oscillator]



dx3

dτ
= ε(1− x32)xk − (ya3 + yb3 + yc3 + yd3)

dya3

dτ
=
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4
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}
.

(4)

[Fourth oscillator]

dx4

dτ
= ε(1− x42)xk − (ya4 + yb4 + yc4 + yd4)

dya4

dτ
=

1
4

{
x4 − ηya4 − γ(ya4 + yc1)

}
dyb4

dτ
=
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(5)

[Fifth oscillator]



dx5

dτ
= ε(1− x52)xk − (ya5 + yb5 + yc5 + yd5)

dya5

dτ
=

1
4

{
x5 − ηya5 − γ(ya5 + yd1)

}
dyb5

dτ
=

1
4

{
x5 − ηyb5 − γ(yb5 + yd2)

}
dyc5

dτ
=
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4

{
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}
dyd5

dτ
=

1
4

{
x5 − ηyd5

}
.

(6)

We use the following normalizations:

t =
√

LCτ, vk =

√
g1

g3
xk, iak =

√
g1C
g3L

yak,

ibk =

√
g1C
g3L

ybk, ick =

√
g1C
g3L

yck,

ε = g1

√
L
C
, γ = R

√
C
L
, η = rm

√
C
L
,

(k=1, 2, 3,... 5),
whereε is the nonlinearity,γ is the coupling strength, and
η indicates the resistive component. In the computer sim-
ulations, we calculate the phase differences between adja-
cent oscillators. Hererm denotes the internal resistance of
an inductor. We calculate Eqs. (2)-(6) using a fourth-order
Runge-Kutta method with the step sizeh = 0.002 in this
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Figure 4: Attractor between adjacent oscillators (horizontal
axis:yk, vertical axis:xk, (k = 1, 2, 3...5)).
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Figure 5: The time wave of each oscillator.

circuit. In this case, the parameters are set toε = 0.100,η
= 0.00010 andγ = 0.100. We measure the phase difference
between adjacent oscillators with bisection method.

In Fig. 4, we show the attractor of each oscillator in this
simulation. In this figure, we show the horizontal axis is
the voltage of each condenser, and the vertical axis is the
electric current of each oscillator. The electric current is
summed the three currentsyk = yak + ybk + yck + ydk. And
Fig. 5 shows the time wave form of the voltage of each ca-
pacitor after sufficient time has elapsed. The phase differ-
ences between the adjacent oscillator of this case is equal
to the result as shown in Fig. 6. As a result, in the case
of this circuit model, it was observed that the phase differ-
ence finally converged with the constant value. Addition-
ally, we can find that synchronization with in-phase occurs
in the sharing triangular oscillatory network. By changing
the initial conditions, we could observe that either two ad-
jacent oscillators synchronize with in-phase among sharing
three oscillators (see. Fig. 7). This is one of the result when

(a)

(b)

Figure 6: The phase difference between adjacent oscillator.
(a) Sharing triangle. (b) The whole circuit model.

(a) (b) (c)

Figure 7: The relationship of phase differences in the shar-
ing triangle forε = 0.50,η = 0.00010,γ = 0.10.

we gave the different initial conditions by each simulation.
By this result, we can find that the combinations of oscil-
lators which synchronize with in-phase states change by
given initial conditions. Also, we could not obtain three-
phase synchronization in the sharing triangle.

3. Dependency of Initial Condition

In this section, we investigate the phase difference by
changing the initial conditions. Except for the initial con-
ditions of the first and second oscillator, we fix all param-
eters as follows,ε = 0.10, η = 0.00010,γ = 0.10. And
all of initial conditions of the 3rd, 4th, and 5th oscillators
is fixed as 0.10 (i.e.xk = yak = ybk = yck = ydk = 0.10
(k = 3, 4, 5)) and iteration count is set toτp = 30,000.
In Fig.8(a), we map the phase difference between 1st and
2nd oscillators by changing initial conditions from 0.10 to
1.00. From this result, we confirm that the phase differ-
ence is divided into a few patterns. However, we find that a
phase difference only rotates by initial conditions when we
measured the phase difference between first oscillator and
other one. Seen from another viewpoint, when we give the
initial conditions of the two oscillators near the boundary,
the phase difference changes from 0.0◦ to 94.5◦ by increas-
ing the iteration. At the other case, the phase difference
converges at the early stage far from the boundary.

In the case ofε = 0.50 and 1.00, we perform the above-
mentioned measurement equally and the obtained results
are summarized in Figs. 8 (b) and (c). By changing the
nonlinearity (parameterε), we can observe the rotation of
the phase difference. Namely, the same combination of the
phase difference is obtained. For example, we set the pa-
rameters as follows,ε = 0.50, initial condition of the 1st
oscillator is 0.40 and the 2nd oscillator is 0.10. Then, we
observe that the phase difference between 1st and 2nd os-
cillator is 109.5◦, and 2nd and third oscillator is 0.03◦.

In the case of theε = 1.00, the combination of the phase
differences changes with initial conditions likewise (see.
Tab. 1). From this result, we can see that any two oscil-
lators in triangular network are synchronized at in-phase
state.
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Figure 8: The phase differences between 1st and 2nd oscil-
lators. (a)ε = 0.10. (b)ε = 0.50. (c)ε = 1.00.

4. Conclusion

In this study, we have investigated synchronization phe-
nomena observed in coupled two tetrahedrally form shar-
ing the triangle oscillatory system. Unlike the case only for
the tetrahedron form, it was observed that the phase dif-
ference converged with a certain value. Furthermore, we
made clear the characteristics of the phase differences by
the initial conditions.

In our future works, we confirm that the stability of the
oscillatory network which the coexistence of the solution
may exist with circuit experiment and numerical analysis.

Table 1: Phase difference relations between the adjacent
oscillators

Initial Conditions Phase Difference
for 1st-2nd 2nd 3rd 4th 5th
0.20-0.10 92.4◦ 92.4◦ 116.8◦ 116.8◦

0.20-0.20 0.00◦ 102.1◦ 153.7◦ 153.7◦

0.20-0.40 102.1◦ 0.00◦ 153.7◦ 153.7◦

0.40-0.20 115.3◦ 115.3◦ 85.8◦ 85.8◦
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