
Quinary Adder LOGO Neural Network Based on
Mixed Radices

Hassan Amin Osseily, Ali Massoud Haidar*
Faculty of Engineering, Beirut Arab University, Beirut - Lebanon

Email : sasoha@yahoo.com, *ari@bau.edu.net

Abstract— Our objective in this paper is to demonstrate
an optimized method of the addition process in Quinary
Logic (QL) adders, and which we will call the “mixed
radices of Quinary / binary”. Upon mixing radices
(quinary / binary), we will be able to represent quinary
numbers by using binary vectors with only two bits
instead of three bits. Implementing this method, by using
the Logic Oriented Neural Network (LOGO-NN), will
enable us as well to reduce the number of needed elements
and interconnections. The proposed adder will be
compared with other techniques in order to evaluate its
performance.

 Introduction

Rapid progress in the domain of neural networks and
microelectronic technologies has increased enormously the
need of development of high speed, efficient, and high
computational engineering tasks. In this paper, a new neural
networks approach has been proposed to implement a quinary
arithmetic adder model. The LOGO-NN can perform several
independent computations in parallel [1], by using a single
network. The multiple-valued logic LOGO-NN [2] provides
powerful computational capabilities for larger quantities of
data. New LOGO-NN systems include associated mathematical
tools which allow us to analyze and synthesize any logic model
in a simple and systematical approach. The LOGO-NN is
proposed in a way to form a complete system (completeness)
that can realize any multiple-valued logic function [3]. It has
been found that the mixed radices [4], [5] provide a convenient
way to analyze, synthesize and minimize the multiple valued
logic functions. Also, it has been proven that mixed radices
LOGO-NN [4] allow us to reduce the number of elements and
interconnections. In this paper, we will try to use mixed radices
quinary /quaternary / binary to reduce the binary representation
of quinary numbers, thus decreasing the number of elements
and interconnections of quinary adder LOGO-NN.

I. NEURON MODEL

A. General Overview

The LOGO-NNs are composed of one neural type, and all the
synapse’s weights between neurons are taken as natural
integers. These two characteristics make LOGO-NNs useful,
simple to design and more realistic in comparison with that of
[2]. The Galois field algebra [4] provides a convenient way to
specify the structure of binary, ternary and quaternary. The
LOGO-NN operators of Galois field along with the logic
constants, form a finite field. The structure of k-valued logic
LOGO-NN is defined as:

 NNQ = (G, GF (k), ƒ (Z)) (1)

where,
G: Finite directed graph under the form:
 G =(N, L, W) (2)

where,
N: is the Set of nodes (neurons).
L: is the Set of links (connections).
W: is the Set of synapse’s weights.
GF (k) = Galois field of k elements, defined
as:

 GF (k) = {0, 1, 2… k – 1} (3)
 k ≥ 2 (4)
ƒ (Z): Output signal of processing elements (neuron)

 , 0
0, 0 (5)

 Z ∑ i i θ (6)

Figure 1: Processing element

 where,
 xi: Input signals.
 xi ∈ GF (k) = {0, 1, 2… K – 1}.
 wi: Multiplicative coefficient (weight) for xi
 i = 0, 1… n
 θ: Threshold of the processing element.
 wi, θ ∈ {…, -2, -1, 0, 1, 2 …}.

Figure 2: Linear transfer function

B. Galois field of 2 elements LOGO-NN
Any binary logic function can be represented by the familiar
Galois field structures [4]. The flexibility of this modular
algebra demonstrated above, is its suitability for the
applications of LOGO-NN. The Galois field of 2-elements, for
example, has a value of K = 2, thus GF (2) = {0, 1}. Where
GF (2) is defined by the addition (⊕) and multiplication (•)
functions, as given in table 1 below and as shown in figure 3.

2009 International Symposium on Nonlinear Theory and its Applications
NOLTA'09, Sapporo, Japan, October 18-21, 2009

- 511 -

⊕ 0 1 • 0 1
0
1

0
1

1
0 0

1
0
0

0
1

Table 1: ⊕ and • Functions of GF (2).

Figure 3: LOGO-NN of GF (2) functions.

C. Basic Binary LOGO-Neural Networks
The basic binary Logo Neural Networks are similar to those
used in binary logic function such as the complement function,
AND, OR, NOR, NAND…etc.

Complement function:
The complement function is defined by (7) and Table 2, where
its LOGO-NN operator is designed as shown in Fig. 4.

 x = 1 – (7)

TABLE 2: COMPLEMENT FUNCTIONS

 x
0
1

1
0

Figure 4: LOGO-NN of complement function

GF (2) Multiplication of n-input signals:
The LOGO-NN of GF (2) multiplication of n-input signals
(Fig. 5) is designed for:

w0 = w1 = w2 = …. = wn = 1 and θ = n
Then:

 ƒ(Z) = x0 • x1 • x2 • …. • xn (8)

Figure 5: LOGO-NN for GF (2) multiplication of n-input

OR function:
The OR function is defined as given in Table 3 and as shown
in figure 6.

+ 0 1
0
1

0 1
1 1

Figure 6: LOGO-NN of OR function

Minimization rule of LOGO Neural Networks:
The LOGO neural networks of Figure 7, shows a simple
example for reduction rule that can be used to minimize
LOGO-NN of the expression (f= x • y •)

Figure 7: Minimized Network.

II. QUINARY LOGIC ADDER BASED ON MIXED RADICES AND
ITS LOGO-NN IMPLEMENTATION

 Quinary Logic Adderer:
The quinary logic addition process of two quinary input
variables is defined as given in table 4, where S is the sum (S
= X • Y) and C is the carry of S.

TABLE 9: REPRESNTATION OF SUM AND CARRY

Y X S C
0 0 0 0
0 1 1 0
0 2 2 0

0 3 3 0
0 4 4 0
1 0 1 0
1 1 2 0
1 2 3 0
1 3 4 0
1 4 0 1
2 0 2 0

2 1 3 0
2 2 4 0
2 3 0 1
2 4 1 1
3 0 3 0
3 1 4 0
3 2 0 1
3 3 1 1
3 4 2 1
4 0 4 0
4 1 0 1
4 2 1 1
4 3 2 1
4 4 3 1

TABLE 3: OR FUNCTIONS

- 512 -

X, Y and S belong to the quinary set {0, 1, 2, 3, and 4}. To
represent these variables under a binary form, we need three
bits for each. Then we will obtain 64 different binary
combinations between X and Y where 39 of them will be
dropped/unused.

Let: Y=(Y3,Y2,Y1), X=(X3,X2,X1), S=(S3,S2,S1) and
C=(c2,c1)

In order to reduce the calculation complexity, we will try to
represent the input variables by two binary bits only instead of
three bits and hence the problem will become similar to the
quaternary issue [4] ,thus we will have only 16 binary
combinations and this will lead us to minimize the expressions
of the functions of S and C. To achieve this objective, we
suppose the following methodology:

• We have noticed from table 4 that C=0 when: X=0 or Y=0
and S=X or S=Y, and that for X=Y1 then C=1 and S=0.
This will allow us to remove all these cases from table 4
because the result here could be predicted. Hence the values
of X, Y and S belong now to the set {1, 2, 3, 4}.

TABLE 8: X, Y, AND S FOR X≠0, Y≠0

Y X S C
1 1 2 0

1 2 3 0

1 3 4 0

2 1 3 0

2 2 4 0

2 4 1 1

3 1 4 0

3 3 1 1

3 4 2 1

4 2 1 1

4 3 2 1

4 4 3 1

• The next step is to subtract “1” from the digits of X and Y.
Thus, the set of numbers becomes the same of the
quaternary one {0,1,2,3}.

• After the subtraction , we could then represent the numbers
0,1,2 and 3 by two bits binary vectors, that is to say 0=(0,0),
1=(0,1), 2=(1,0) and 3=(1,1).Hence, and after we apply the
above procedures, we obtain a reduced table which is shown
in table 8. The equations of y, x , S and C are as follows:

 y=Y-1= (y2, y1) (23)

 x=X-1=(x2, x1) (24)

 S0= (s3, s2, s1) (25)

 C= (c1) (26)

TABLE 9: REPRESNTATION OF X AND Y BY 0,1

y2,y1 x2,x1 S3,S2,S1 C
0,0 0,0 0,1,0 0

0,0 0,1 0,1,1 0

0,0 1,0 1,0,0 0

0,1 0,0 0,1,1 0

0,1 0,1 1,0,0 0

0,1 1,1 0,0,1 1

1,0 0,0 1,0,0 0

1,0 1,0 0,0,1 1

1,0 1,1 0,1,0 1

1,1 0,1 0,0,1 1

1,1 1,0 0,1,0 1

1,1 1,1 0,1,1 1

Consequently, we obtain the traditional functions s1, s2, c1
with four variables x1, x2, y1, and y2. To find the optimized
functions, it could be done easily by using karnaugh map [6],
The following expressions will be obtained:

S01= x1.x2. y2 +x2.y1.y2+x1.x2 y1.y2+ x1.x2 y1.y2 + x1.x2 y1.y2 (27)

S02= x1.x2. y1 +x1.y1.y2 +x1.x2 y2 + x2.y1 y2 (28)
S03=S1 S2 (29)

C0= x2.y2 + x1.y1.y2 + x1.x2.y1 (30)

The block diagram in figure 8 shows the major units involved
in the structure of the quinary adder. This block diagram is
composed of three units. The input unit is the quinary to binary
converter which is designed by LOGO-NN to convert directly
any quinary number to a binary one with two bits only. Many
methods were proposed [7], [8] to design radix converters. The
second unit is the LOGO-NN adder which composes the heart
or the main unit.

The LOGIC UNIT is the output unit with binary coded quinary
where we get the final sum and carries resulting from the
addition process of the two quinary numbers X and Y.

 Figure 8: Block Diagram for Quinary / Binary Adder.

- 513 -

The LOGO-NN of the three units is as shown in the figures 9,
10 and 11 respectively.
In figure 9, the LOGO-NN quinary to binary converter is
designed to give for certain quinary inputs (X and Y), the
corresponding binary vectors with two bits (x1, x2) and
(y1, y2). First, we have a rotary switch that select one quinary
digit as input. For the input 0, we put an inverter to get the
logical “0” when we activate the input by a logical “1”. Hence,
we deal with the remaining 4 quinary inputs (1, 2, 3, and 4) as
if they were quaternary inputs and which, in their turn, need
two binary bits only for representation.

Figure 9: Quinary to Binary converter LOGO-NN

Figure 10 shows the main unit of the adder with mixed radices
quaternary to binary coded quinary. The LOGO-NN
implementation for equations 15,16,17,18 and 19 are given as
per paragraph II (Neuron Model).

Figure 10: Multiplier Unit LOGO-NN.

III. CONCLUSION
We presented in this paper, the development of a new technique
concerning the quinary adder LOGO-NN through the use of
mixed radices (quinary / quaternary / binary) in order to
simplify and minimize the used elements and to increase the
performance of quinary adders to the maximum. The
advantages of mixing the radices are the simplicity of binary
design, and the availability of binary components. The
proposed algorithm makes it possible to represent quinary as
binary with two variables only. While in general it needs to be
represented with three bits for each quinary digit (quits). For
evaluation purposes, simulations were done under these
circumstances:

1. Interesting results were obtained upon applying a simulation
on MATLAB R2007A using a core 2 duo processor of
frequency 1.73 GHz. where we noticed that it takes much less
time to add two numbers using the mixed radices algorithm, in
comparison with that of classical binary addition which is
already embedded in the computer processor.

2. In comparison with other adders’ techniques [2], the
advantages of this method can be summarized by:

• The proposed adder is composed of one neuron type,
while that of [2] is composed of three neuron types.

• The proposed adder performs the complete operation
in a single LOGO neural network, while that of [2] is
decomposed into three sub-circuits which are
controlled by an individual circuit.

• Integers are representing the synapse’s weights and
thresholds of neurons while that of reference [2] are
non integer numbers.

REFERENCES
[1] Joy Rogers, "Object-Oriented Neural Networks in C++”.
Academic Press 1997, PP. 83-131, Alabama, USA.
[2] Hu, C.J “Design of a 4-Valued Digital Multiplier Using an
Artificial Heterogeneous Two Layered Neural Network", ISMVL
Proc., PP. 84-87, 1992.
[3] Goerge Epstein, “Multiple–Valued Logic Design: an introduction”
. PP.12-51University of North Carolina, computer science department,
USA. 1993.
[4] A. M. Haider, "Analysis and Design of Multiple valued logic
systems" Saitama University, Ph.D. thesis, PP. 83-112, Japan 1995.
[5] C. H. Huang, “A fully parallel mixed-radix conversion algorithm
for residue number applications,” IEEE Trans. Comput., vol. 32, pp.
398-402, 1983.
[6] Albert Paul Malvino and Jerald A. Brown, “Digital Computer Electronics”
third edition, Glencoe/McGraw-Hill publishing Company Limited, USA,
pp.71-781999.
[7] T. Sasao, “Radix converters: Complexity and implementation by
LUT cascades,” 35th International Symposium on Multiple-Valued
Logic, Calgary, Canada, May 19-21, 2005, pp.256-263.
[8] Haidar, A., Osseily, H., Shirahama, H., and E. Nassar “Quinary
Coded Decimal Conversion Techniques”, Non Linear Theory
Application Symposium NOLTA 2005, Belgium-Bruge. pp.70-73.

- 514 -

	Navigation page
	Session at a glance
	Technical program

