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Abstract— Our objective in this paper is to demonstrate 
an optimized method of the addition process in Quinary 
Logic (QL) adders, and which we will call the “mixed 
radices of Quinary / binary”. Upon mixing radices 
(quinary / binary), we will  be able to represent quinary 
numbers by using  binary vectors with only  two bits 
instead of three bits. Implementing this method, by using 
the Logic Oriented Neural Network (LOGO-NN), will  
enable us as well to reduce the number of needed elements 
and interconnections. The proposed adder will be 
compared with other techniques in order to evaluate its 
performance. 

 Introduction 

Rapid progress in the domain of neural networks and 
microelectronic technologies has increased enormously the 
need of development of high speed, efficient, and high 
computational engineering tasks. In this paper, a new neural 
networks approach has been proposed to implement a quinary 
arithmetic adder model. The LOGO-NN can perform several 
independent computations in parallel [1], by using a single 
network. The multiple-valued logic LOGO-NN [2] provides 
powerful computational capabilities for larger quantities of 
data. New LOGO-NN systems include associated mathematical 
tools which allow us to analyze and synthesize any logic model 
in a simple and systematical approach. The LOGO-NN is 
proposed in a way to form a complete system (completeness) 
that can realize any multiple-valued logic function [3]. It has 
been found that the mixed radices [4], [5] provide a convenient 
way to analyze, synthesize and minimize the multiple valued 
logic functions. Also, it has been proven that mixed radices 
LOGO-NN [4] allow us to reduce the number of elements and 
interconnections. In this paper, we will try to use mixed radices 
quinary /quaternary / binary to reduce the binary representation 
of quinary numbers, thus decreasing the number of elements 
and interconnections of quinary adder LOGO-NN. 

I. NEURON MODEL 

A. General Overview 

The LOGO-NNs are composed of one neural type, and all the 
synapse’s weights between neurons are taken as natural 
integers. These two characteristics make LOGO-NNs useful, 
simple to design and more realistic in comparison with that of 
[2]. The Galois field algebra [4] provides a convenient way to 
specify the structure of binary, ternary and quaternary. The 
LOGO-NN operators of Galois field along with the logic 
constants, form a finite field. The structure of k-valued logic 
LOGO-NN is defined as:  

 
                  NNQ = (G, GF (k), ƒ (Z))                      (1) 

 
 

  
where, 
G: Finite directed graph under the form: 
                                        G =(N, L, W)                                  (2) 

where, 
N: is the Set of nodes (neurons). 
L: is the Set of links (connections). 
W: is the Set of synapse’s weights. 
GF (k) = Galois field of k elements, defined 
as: 

                       GF (k) = {0, 1, 2… k – 1}              (3) 
                                    k ≥ 2                                      (4) 
ƒ (Z): Output signal of processing elements (neuron) 
 

                               ,  0
0, 0                                   (5) 

 
                                     Z ∑ i i θ                            (6) 

 
Figure 1: Processing element 

 
 where, 
 xi: Input signals. 
 xi ∈ GF (k) = {0, 1, 2… K – 1}. 
 wi: Multiplicative coefficient (weight) for xi  
 i = 0, 1… n 
 θ: Threshold of the processing element. 
 wi, θ ∈ {…, -2, -1, 0, 1, 2 …}. 

 

Figure 2: Linear transfer function 

B.  Galois field of 2 elements LOGO-NN 
Any binary logic function can be represented by the familiar 
Galois field structures [4]. The flexibility of this modular 
algebra demonstrated above, is its suitability for the 
applications of LOGO-NN. The Galois field of 2-elements, for 
example, has a value of K = 2, thus GF (2) = {0, 1}. Where 
GF (2) is defined by the addition (⊕) and multiplication (•) 
functions, as given in table 1 below and as shown in figure 3. 
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⊕ 0 1  • 0 1 
0 
1 

0 
1 

1 
0  0 

1 
0 
0 

0 
1

 
Table 1: ⊕ and • Functions of GF (2). 

 
Figure 3: LOGO-NN of GF (2) functions. 

C.  Basic Binary LOGO-Neural Networks 
The basic binary Logo Neural Networks are similar to those 
used in binary logic function such as the complement function, 
AND, OR, NOR, NAND…etc. 
 
Complement function: 
The complement function is defined by (7) and Table 2, where 
its LOGO-NN operator is designed as shown in Fig. 4. 
 
                                              x = 1 –                                    (7) 

TABLE 2: COMPLEMENT FUNCTIONS  

 x  
0 
1 

1 
0 

 
Figure 4: LOGO-NN of complement function 

 
GF (2) Multiplication of n-input signals: 
The LOGO-NN of GF (2) multiplication of n-input signals 
(Fig. 5) is designed for: 

w0 = w1 = w2 = …. = wn = 1 and θ = n 
Then: 

               ƒ(Z) = x0 • x1  • x2  • …. • xn                         (8) 

 
Figure 5: LOGO-NN for GF (2) multiplication of n-input 

 
OR function: 
The OR function is defined as given in Table 3 and as shown 
in figure 6. 
 

+ 0    1 
0 
1 

0   1 
1   1 

 
Figure 6: LOGO-NN of OR function 

 
Minimization rule of LOGO Neural Networks: 
The LOGO neural networks of Figure 7, shows a simple 
example for reduction rule that can be used to minimize 
LOGO-NN of the expression (f= x • y • ) 

       
Figure 7: Minimized Network. 

II. QUINARY LOGIC ADDER BASED ON MIXED RADICES AND 
ITS LOGO-NN IMPLEMENTATION 

 Quinary Logic Adderer: 
The quinary logic addition process of two quinary input 
variables is defined as given in table 4, where S is the sum (S 
= X • Y ) and C is the carry of S. 

TABLE 9: REPRESNTATION OF SUM AND CARRY  

Y X S C 
0 0 0 0 
0 1 1 0 
0 2 2 0 

0 3 3 0 
0 4 4 0 
1 0 1 0 
1 1 2 0 
1 2 3 0 
1 3 4 0 
1 4 0 1 
2 0 2 0 

2 1 3 0 
2 2 4 0 
2 3 0 1 
2 4 1 1 
3 0 3 0 
3 1 4 0 
3 2 0 1 
3 3 1 1 
3 4 2 1 
4 0 4 0 
4 1 0 1 
4 2 1 1 
4 3 2 1 
4 4 3 1 

TABLE 3: OR FUNCTIONS  
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X, Y and S belong to the quinary set {0, 1, 2, 3, and 4}. To 
represent these variables under a binary form, we need three 
bits for each. Then we will obtain 64 different binary 
combinations between X and Y where 39 of them will be 
dropped/unused.  

Let: Y=(Y3,Y2,Y1), X=(X3,X2,X1), S=(S3,S2,S1) and 
C=(c2,c1) 

In order to reduce the calculation complexity, we will try to 
represent the input variables by two binary bits only instead of 
three bits and hence the problem will become similar to the 
quaternary issue [4] ,thus we will have only 16 binary 
combinations and this will lead us to minimize the expressions 
of the functions of S and C. To achieve this objective, we 
suppose the following methodology:  

• We have noticed from table 4 that C=0 when: X=0 or Y=0 
and S=X or S=Y, and that for X=Y1  then C=1 and S=0. 
This will allow us to remove all these cases from table 4 
because the result here could be predicted. Hence the values 
of X, Y and S belong now to the set {1, 2, 3, 4}. 

TABLE 8: X, Y, AND S FOR X≠0, Y≠0  

Y X S C 
1 1 2 0 

1 2 3 0 

1 3 4 0 

2 1 3 0 

2 2 4 0 

2 4 1 1 

3 1 4 0 

3 3 1 1 

3 4 2 1 

4 2 1 1 

4 3 2 1 

4 4 3 1 

• The next step is to subtract “1” from the digits of X and Y. 
Thus, the set of numbers becomes the same of the 
quaternary one {0,1,2,3}.  

• After the subtraction , we could then represent the numbers 
0,1,2 and 3 by two bits binary vectors, that is to say 0=(0,0), 
1=(0,1), 2=(1,0) and 3=(1,1).Hence, and after we apply the 
above procedures, we obtain a reduced table which is shown 
in table 8. The equations of y, x , S and C are as follows: 
 

                                         y=Y-1= (y2, y1)                             (23) 

                                          x=X-1=(x2, x1)                             (24) 

                                          S0= (s3, s2, s1)                          (25) 

                                                C= (c1)                                (26) 

 

 

 

TABLE 9: REPRESNTATION OF X AND Y BY 0,1 

y2,y1 x2,x1 S3,S2,S1 C 
0,0 0,0 0,1,0 0 

0,0 0,1 0,1,1 0 

0,0 1,0 1,0,0 0 

0,1 0,0 0,1,1 0 

0,1 0,1 1,0,0 0 

0,1 1,1 0,0,1 1 

1,0 0,0 1,0,0 0 

1,0 1,0 0,0,1 1 

1,0 1,1 0,1,0 1 

1,1 0,1 0,0,1 1 

1,1 1,0 0,1,0 1 

1,1 1,1 0,1,1 1 

Consequently, we obtain the traditional functions s1, s2, c1 
with four variables x1, x2, y1, and y2. To find the optimized 
functions, it could be done easily by using karnaugh map [6], 
The following expressions will be obtained: 

 
S01= x1.x2. y2 +x2.y1.y2+x1.x2 y1.y2+ x1.x2 y1.y2 + x1.x2 y1.y2          (27)                

S02= x1.x2. y1 +x1.y1.y2 +x1.x2 y2 + x2.y1 y2                                          (28) 
S03=S1 S2                                                                              (29) 

C0= x2.y2 + x1.y1.y2 + x1.x2.y1                                                      (30) 

 

The block diagram in figure 8 shows the major units involved 
in the structure of the quinary adder. This block diagram is 
composed of three units. The input unit is the quinary to binary 
converter which is designed by LOGO-NN to convert directly 
any quinary number to a binary one with two bits only. Many 
methods were proposed [7], [8] to design radix converters. The 
second unit is the LOGO-NN adder which composes the heart 
or the main unit.  

The LOGIC UNIT is the output unit with binary coded quinary 
where we get the final sum and carries resulting from the 
addition process of the two quinary numbers X and Y. 

 Figure 8: Block Diagram for Quinary / Binary Adder. 
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The LOGO-NN of the three units is as shown in the figures 9, 
10 and 11 respectively.  
In figure 9, the LOGO-NN quinary to binary converter is 
designed to give for certain quinary inputs (X and Y), the 
corresponding binary vectors with two bits (x1, x2) and      
(y1, y2). First, we have a rotary switch that select one quinary 
digit as input. For the input 0, we put an inverter to get the 
logical “0” when we activate the input by a logical “1”. Hence, 
we deal with the remaining 4 quinary inputs (1, 2, 3, and 4) as 
if they were  quaternary inputs and which, in their turn, need 
two binary bits only for representation. 

 
 

Figure 9: Quinary to Binary converter LOGO-NN 
 
 
Figure 10 shows the main unit of the adder with mixed radices 
quaternary to binary coded quinary. The LOGO-NN 
implementation for equations 15,16,17,18 and 19 are given as 
per paragraph II (Neuron Model).  
 

 
Figure 10: Multiplier Unit LOGO-NN. 

III. CONCLUSION 
We presented in this paper, the development of a new technique 
concerning the quinary adder LOGO-NN through the use of 
mixed radices (quinary / quaternary / binary) in order to 
simplify and minimize the used elements and to increase the 
performance of quinary adders to the maximum. The 
advantages of mixing the radices are the simplicity of binary 
design, and the availability of binary components. The 
proposed algorithm makes it possible to represent quinary as 
binary with two variables only. While in general it needs to be 
represented with three bits for each quinary digit (quits). For 
evaluation purposes, simulations were done under these 
circumstances: 
  
1. Interesting results were obtained upon applying a simulation 
on MATLAB R2007A using a core 2 duo processor of 
frequency 1.73 GHz. where we noticed that it takes much less 
time to add two numbers using the mixed radices algorithm, in 
comparison with that of classical binary addition which is 
already embedded in the computer processor. 

2. In comparison with other adders’ techniques [2], the 
advantages of this method can be summarized by: 

• The proposed adder is composed of one neuron type, 
while that of [2] is composed of three neuron types. 

• The proposed adder performs the complete operation 
in a single LOGO neural network, while that of [2] is 
decomposed into three sub-circuits which are 
controlled by an individual circuit. 

• Integers are representing the synapse’s weights and 
thresholds of neurons while that of reference [2] are 
non integer numbers. 
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