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Abstract—In this paper, we consider a method of nu-
merical bifurcation analysis of nonlinear switched au-
tonomous systems. Its development is motivated by sev-
eral factors: linear systems can be studied through analyt-
ical approaches; smooth and non-autonomous systems can
be studied using a standard periodical Poincaré map. Our
goal is to develop a method as general as possible and im-
plement it as a computer-based tool. The main evolution
we will describe this time is the possible treatment of vari-
able switching conditions.

1. Introduction

Switched systems exist in many domains such as me-
chanics or electronics. The solution function is usually
continuous but presents points of non-derivability where
discrete changes occur. Some of the most widely studied
applications are related to electrical engineering, such as
power converters investigated as piecewise smooth systems
by di Bernardo [1], Tse [2] or Banerjee [3][4]; or some PLL
models as introduced by Acco [5], referring to this type of
model as “hybrid sequential.” Little work has been done in
the analysis of nonlinear piecewise smooth models, apart
from Kawakami, Ueta and Kousaka [7][8]. As for hybrid
linear models, they can be analyzed using rigorous analyti-
cal methods as shown by Kabe [6]. However the nonlinear
property of many systems reserve this option for approx-
imated models only. Proper treatment of nonlinearity re-
quires numerical methods.

We review the analysis method based on a Poincaré
map and introduce some modifications and improvements.
Kousaka [7] introduced the steps to compute bifurcation
sets of nonsmooth dynamical systems by solving a pure
initial value problem (using an ODE solver only). On the
other hand, in order to bring the equation sets of the model
to an acceptable level of complexity, many assumptions
were made, particularly on the Poincaré sections (perpen-
dicular or parallel to the local coordinates), as in the analy-
sis of the 3-state Alpazur oscillator [9] for instance. In or-
der to generalize our method, we introduced two main evo-

lutions. The first one is a numerical differentiation which
lifts the necessity of expressing complex second deriva-
tives. The second one is a generalization of the expression
of the Poincaré section, which can be now represented as
any smooth surface in the local referential. Such simplifi-
cations naturally ease the analysis process of systems with
many discrete states. We consider the analysis results of the
Alpazur oscillator with variable switching conditions. Our
method here proves capable of handling switching condi-
tions defined by non-trivial equations of multiple state vari-
ables.

2. Principles

2.1. Modeling the System

Let us consider a system written by a set of differential
equations defined by smooth functions piecewisely, i.e., for
the state i:

dX
dt
= fi(X), i = 1, · · ·m (1)

where,
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Within each state there is a solution function such as:

X(t) = ϕi(t, Xi) with X(0) = Xi, (3)

where Xi is the initial value of state i.
Now, based on the switching rules and the definition of a
period of our system, we set the Poincaré map, placing its
sections at the switching points. We assume for now that
the switching conditions for each state can be expressed
as a function of the system variables, e.g., for the state i:
qi(X) = 0.
The map is therefore expressed as:

Πi = {Xi ∈ Rn | qi = 0}
Ti : Πi → Πi+1

Xi 7→ Xi+1 = ϕi(τi, Xi).
(4)
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We are now able to perform a local analysis over each par-
tial orbit delimited by those Poincaré sections. Thus the
Poincaré mapping is defined as a differentiable map:

T = Tm ◦ · · · ◦ T1 ◦ T0. (5)

We finally apply a projection from Rn to Rn−1 due to the
equation of the final state switch condition qm−1 = 0 as
seen in [7]:

p : Π0 → Σ0

X0 7→ U0
with Tl = p−1 ◦ T ◦ p, (6)

which we use as a discrete definition of our system Fig.1.
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Figure 1: Abstract representation of the Poincaré map

2.2. Analysis approach

In order to compute phase portraits for a given system,
we simply integrate the differential equations. The switch-
ing conditions previously defined are constantly verified in
order to use the variational equations matching the current
state. A proper adaptive stepsize Runge Kutta integration
gave us good performance along with precious control of
the numerical error.
For the computation of fixed points, we integrate the par-
tial derivatives of the differential equations in parallel of the
solution:

d
dt
∂ϕi

∂Xi−1
=
∂ fi
∂X
∂ϕi

∂Xi−1
where

∂ϕi

∂Xi−1
(0) = I, (7)

where I is the identity matrix. We compute the Jacobian
matrix of each local map:

∂Xi

∂Xi−1
=
∂ϕi

∂Xi−1
+

dXi

dt
∂τi

∂Xi−1
, (8)

The expression of ∂τi
∂Xi−1

depends on the switching condition,
so its expression takes into account the following terms and
functions: ∂ϕi

∂Xi−1
, qi(X), and fi(X). Next, we can express the

Poincaré map:
∂Xm

∂X0
=

m
∏

i=1

∂Xi

∂Xi−1
. (9)

We then apply the projection p and obtain the Jacobian:

DTl(U0) =
∂Um

∂U0
. (10)

For a fixed point we solve:

Tl(U0) = Um = U0. (11)

We use the approximation of the tangent to the solution
DTl in the Newton method in order to compute an accurate
value of U0. If our initial value is in the domain of con-
vergence, we can compute an accurate solution of the fixed
point.
Finally, concerning the critical values required to compute
bifurcation sets, we use the characteristic equation of our
system in order to determine an extra constraint. Depend-
ing on the desired bifurcation diagram, we choose λ, one of
the parameters from the diagram space, as an extra degree
of freedom to compute a solution of our new equations set:

χl(µ) = det(DTl − µIn−1) = 0, (12)

where In−1 is thye identity matrix. µ is defined by the bifur-
cation type. So our problem can be written:

F(U0, λ) =

[

Um − U0

χl(µ)

]

= 0. (13)

Which means we are to compute the following Jacobian
matrix of Eq. (13):
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(14)

The second row of Eq. (14) requires the second deriva-
tives of the solutions of variational Eq. (7). Computing a
number of second derivatives can be done two ways: one
based on an analytical approach, consisting in simply de-
riving once more the first derivative elements; the second
one is numerical since it consists in approaching the tan-
gent by differentiation, performing a multiple integration
using shifted input variables.

3. Variably Switching Alpazur Oscillator

3.1. Model description

We use the Alpazur oscillator [8] with modified switch-
ing conditions.

The continuous variable is represented by: X =
(

x
y

)

According to the position of the switch, we have, for each
state (i = {1, 2}), the following differential equations:

fi(X) =

(

fi(x, y)
gi(x, y)

)
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Figure 2: Electronic implementation of the Alpazur osc.

For state i: (terminal a(i = 1) or b(i = 2) in SW)

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dx
dt
= fi(x, y) = −rx − y

dy
dt
= gi(x, y) = x + (1 − Ai)y −

1
3

y3
+ Bi.

(15)

where x and y are normalized variables corresponding to
the current i and voltage v (detailed in [8]); and where Ai

and Bi are real numbers.
In order to determine the discrete behavior, we establish the
following switching rules:

q1(x, y) = y + 1.0 − 0.2 sin x
q2(x, y) = y + 0.1 − 0.2x2,

(16)

Such switching conditions are indeed very unlikely, but
they demonstrate the efficiency of the method even for
complex switching cases. This system exhibits chaotic or-
bits at particular parameter values such as the following set:

r = 0.1 A1 = 0.2 A2 = 2.0 B1 = −0.2 B2 = 1.0
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Figure 3: Sample phase portrait of chaotic behavior

We define the map:

T = T1 ◦ T0 : Π0 → Π0

x0 7→ x2 = ϕ(τ, x0).
(17)

3.2. Fixed points

As previously shown, the problem of Fixed points is as
follows:

x2 − x0 = 0. (18)

In order to achieve the appropriate correction, we need to
compute:
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(19)
For each State i we compute:
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where ∂yi/∂xi = ∂yi/∂x|qi(xi ,yi)=0 and x=xi
; qix and qiy are the

components of a vector tangent to the switching curve at
Xi.
Then there are two ways of calculating ∂yi/∂xi−1 and
∂yi/∂yi−1:
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We numerically integrate the required elements:

d
dt

[
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yi

]

=

[

fi(x, y)
gi(x, y)

]

State 1: from x0

State 2: from x1
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We now use the Newton method to compute the correction
to be applied:

x′0 = x0 −
x2 − x0

∂x2

∂x0
− 1
. (25)
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Figure 4: Bifurcation diagram in the B1/B2 parameter plan

3.3. Bifurcations

The characteristic equation is fairly simple:

χ(µ) = det(DTl − µ) = 0, (26)

hence the Jacobian matrix:
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We obtained the bifurcation diagram Fig.4. Note that these
results are consistant with the results from the other ver-
sions of the Alpazur oscillator: 2-state and 3-state. We find
the same monotonic bifurcation structure with a limit set at
a specific value of B1.

4. Generalization

This method can naturally be applied to systems with
higher dimension. This corresponds to applying a projec-
tion on a multi-dimensional surface instead of a simple
curve. We approximate the surface locally using a plane
(in 2D we approximate the switching curve by a line), and
compute the intersection of the variational vector with this
plane: The plane is defined by it normal: ~n | Xi.~n = k then
we can compute ∂τi/∂Xi−1

∂τi

∂Xi−1
=

k −
(

Xi +
∂Xi

∂Xi−1

)

.~n

F(Xi).~n
(28)

5. Conclusion

We have detailed a procedure of numerical bifurcation
analysis of switched systems with great flexibility towards
the nature of the switching conditions, and illustrated it
with the results of a modified Alpazur oscillator. Our fu-
ture work will include studying other systems with higher
dimension, and explore the possible switching scenarios,
which must be expressed in a generic form in order to de-
sign a flexible computer tool based on this method.
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