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Analysis of Simple Hysteresis Neural Networks for Basic Applications
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Abstract—This paper studies application of the hyste- Wiy
resis neural network tbl-queen problems. In this applica- [
tion, the network exhibits oscillatory phenomena for some
problem size. In order to suppress the oscillation, we in- ]
troduce time-variant time-constant to the network. Perfor- Wy
ming basic numerical experiments, we have obtained an Wiy
interesting result: applying the time-variant parameter to Wy
only one cell in the corner of the network, the oscillation
can be suppressed and the desired solution can be obtained.
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(a) One of solutions (b) Neural expression

Figure 1: 6-Queen problem.

1. Introduction
h(x)]
The recurrent neural networks (RNN) have been applied
to several optimization problems [1]-[3]. Classic RNNs
have smooth activation functions and can realize effective
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parallel operation. In the applications, conditions for con- $ Hysteresis i
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vergence to the target solutions and improvement of the
processing performance have been considered.

We have studied the hysteresis neural networks (HNN)
with binary hysteresis activation function [4]-[8]. The 0
HNN has important advantages: the system is piecewise
linear and the dynamics can be analyzed speedily and pre- ) ) o ]
cisely. Using the advantages, we have realized guaran- Figure 2: The binary hysteresis activation function
teed storing desired memories to the HNN-based associ-

ative memories and have clarified periodic dynamics of gitack each other. In order to solve this problem, the follo-
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simple class of the HNNs. wing HNN has been applied [8]:
This paper studies an improvement of the HNN dyna-
mics in the application tdN-queen problems presented in dx;; N N
[8]. In this application, the HNN exhibits oscillatory phe- il = =% + |1~ Zyim +1- Zymj
m=1 m=1

nomena for the cade = 6 etc. In order to suppress the os-
cillation, we introduce time-variant time-constant (TVTC) +a|1- Z Yickjok — Z Yickjek | + Uij

to the HNN. Performing basic numerical experiments, we 1<i-ij—ksN 1<i-ijrkeN

have obtained an interesting result: applying the TVTC to Q)
only one cell in the corner of the HNN, the oscillation can = h(x) = 1 for 0<x

be suppressed and the desired solution can be obtained. It Yi=MXi)=1 0 for xj<1

goes without saying that we can suppress the oscillation By o rei = 1 ~ N andj = 1 ~ N. The coordinate, j) cor-

applying the TVTC to many cells. _ responds to position on the chess board. The binary hyste-
It should be noted that the time-variant parameters agg;s activatiorh(x) is switched from 0 to 1 (respectively,
effective to improve performance of discrete-time associgr g 0) if x reaches the right threshold 1 (respectively, the

tive memories [9], however, there exist not many works Ofaft threshold 0) as shown in Figure 2. For this HNN, the
time-variant parameters in continuous-time RNNSs. energy function is defined by

. N N
2. Hysteresis Neural Networks forN-Queen problem
Y Queenp E(y) = (1—Z)’im]+(1—Zij)+aij[l
The N-Queen problem is a typical optimization pro- m=1 m=1 (2)
blems as shown in Figurel: placing problemd\bthess _ Viok ik — Vi k]
queens on th&l x N chessboard where the queens can not 1§_§iksN B Ki_%;rks,\] e



The solutions correspond to the minimum valuekgf). i=1~6 andj=1~6. We refer to this case as HNN1. Figure 5
We have applied this HNN tdl-queen problems foN €  shows the LCGR fog;;=0.3, u;;=0.5 andw=137°. Figure
{4,5,---,15} and ;=1 for alli and j. The HNN exhibits 6 shows convergence time to some solution. The average
oscillatory phenomena and the occurence rate is shownigcalculated fod0° trials. We can see that the limit cycles

Figure 3. In the figure the word "limit cycle generation rateare suppressed sufficiently and the variation of convergence
(LCGR) " is used. The rate is calculatediié® trials where time is small forT.

the state is declared as a limit cycle if it does not converge
Time-variant time constant : [l
Fixed time constant : [
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to some equilibrium point withirl0* switchings ofh(x;;).

Figure 4 shows an example of limit cycle fbf = 6. In %18 T
these figures, we can see that the LCGR is extremely high 16 1
for N = 6. Hereafter, we focus on the cabe= 6 and §i‘2‘
consider to suppression of the limit cycles. s 10
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Figure 3: Limit cycle generation rate ®° trials. 30
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t=79 =80 =81 =mmmmmmnms > =102 Next, we apply the TVTC only to one cell on the corner.

®
% % % __________ R % For simplicity, we consider the TVTC to the cell i, 1):

.
Figure 4: Example of limit cycles fo8 x 6 networks. A11(7) = 'COS‘)?‘ forr =nT 4
1 forr #nT (4)

/lij(T) =1 for (i, J) * (1, 1)

3. Numerical Experiments . . )
wheren is a nonnegative integer. We refer to this case as

Letr denote the switching numbersta(;). The TVTC HNN2. Figure 7 shows the LCGR fe;=0.3,1;;=0.5 and

depends on. We apply the TVTC to all the cells: w=137°. We can see that the limit cycles are suppressed
sufficiently forT = 5andT = 9. Figure 8 shows conver-
‘co&)(3—67 +ayy)| forr=nT gence tim_e to some_solution: it yaries dependin@'oN_Ve
Aij(7) = T (3)  have confirmed similar results in the case where either of
forz #nT the other corner cells has the TVTC.

whereT is a positive integer that controls the switching Outline of these results are summarized in Tablel that
interval.nis an nonnegative integer;; = 6(i—1)+(j—1), shows relation between the LCGR and convergence time.
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Figure 7: Limit cycle generation rate for HNN2.
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Figure 8: Convergence time for HNN2 (averagel@ tri-
als).

Cell that

Time-variant time constant :[ll ~ Fixed time constant : []]

Table 1: The relation between the limit cycle generation
rate and convergence time.

4. Conclusion

We have considered performance improvement of HNN
in application to N-Queen problems. Applying the TVTC
to the case of 6-Queens, un-desired limit cycles can be sup-
pressed and desired solution is obtained. Especially, we
have confirmed that such a suppression is possible even if
the TVTC is applied to one corner cell only. Future pro-
blems include analysis of dynamics of HNN with TVTC
and application to wider problems.
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Fixed time constant : [] [6]

Limit cycle Convergence time
changes | generation rate [%] &
time
constant Best Worst Best Worst
25.2 0.16 58.9 [9]
0 43 0.05 3344
(T=1,3,7,9)| (T=10) (T=1) (T=2)
H::: 0 13.9 0.16 1242
= (T=59) | (T=8) (1=2) | (T=10)
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