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Abstract—This paper studies application of the hyste-
resis neural network toN-queen problems. In this applica-
tion, the network exhibits oscillatory phenomena for some
problem size. In order to suppress the oscillation, we in-
troduce time-variant time-constant to the network. Perfor-
ming basic numerical experiments, we have obtained an
interesting result: applying the time-variant parameter to
only one cell in the corner of the network, the oscillation
can be suppressed and the desired solution can be obtained.

1. Introduction

The recurrent neural networks (RNN) have been applied
to several optimization problems [1]-[3]. Classic RNNs
have smooth activation functions and can realize effective
parallel operation. In the applications, conditions for con-
vergence to the target solutions and improvement of the
processing performance have been considered.

We have studied the hysteresis neural networks (HNN)
with binary hysteresis activation function [4]-[8]. The
HNN has important advantages: the system is piecewise
linear and the dynamics can be analyzed speedily and pre-
cisely. Using the advantages, we have realized guaran-
teed storing desired memories to the HNN-based associ-
ative memories and have clarified periodic dynamics of a
simple class of the HNNs.

This paper studies an improvement of the HNN dyna-
mics in the application toN-queen problems presented in
[8]. In this application, the HNN exhibits oscillatory phe-
nomena for the caseN = 6 etc. In order to suppress the os-
cillation, we introduce time-variant time-constant (TVTC)
to the HNN. Performing basic numerical experiments, we
have obtained an interesting result: applying the TVTC to
only one cell in the corner of the HNN, the oscillation can
be suppressed and the desired solution can be obtained. It
goes without saying that we can suppress the oscillation by
applying the TVTC to many cells.

It should be noted that the time-variant parameters are
effective to improve performance of discrete-time associa-
tive memories [9], however, there exist not many works of
time-variant parameters in continuous-time RNNs.

2. Hysteresis Neural Networks forN-Queen problem

The N-Queen problem is a typical optimization pro-
blems as shown in Figure1: placing problems ofN chess
queens on theN × N chessboard where the queens can not

(a) One of solutions (b) Neural expression

Figure 1: 6-Queen problem.

Figure 2: The binary hysteresis activation function

attack each other. In order to solve this problem, the follo-
wing HNN has been applied [8]:
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yi j = h(xi j) =

{
1 for 0 ≤ xi j

0 for xi j ≤ 1

wherei = 1 ∼ N and j = 1 ∼ N. The coordinates(i, j) cor-
responds to position on the chess board. The binary hyste-
resis activationh(x) is switched from 0 to 1 (respectively,
1 to 0) if x reaches the right threshold 1 (respectively, the
left threshold 0) as shown in Figure 2. For this HNN, the
energy function is defined by
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(2)
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The solutions correspond to the minimum value ofE(y).
We have applied this HNN toN-queen problems forN ∈
{4, 5, · · · , 15} andλi j=1 for all i and j. The HNN exhibits
oscillatory phenomena and the occurence rate is shown in
Figure 3. In the figure the word ”limit cycle generation rate
(LCGR) ” is used. The rate is calculated in105 trials where
the state is declared as a limit cycle if it does not converge
to some equilibrium point within104 switchings ofh(xi j).
Figure 4 shows an example of limit cycle forN = 6. In
these figures, we can see that the LCGR is extremely high
for N = 6. Hereafter, we focus on the caseN = 6 and
consider to suppression of the limit cycles.
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Figure 3: Limit cycle generation rate in105 trials.
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Figure 4: Example of limit cycles for6 × 6 networks.

3. Numerical Experiments

Let τ denote the switching numbers ofh(xi j). The TVTC
depends onτ. We apply the TVTC to all the cells:

λi j(τ) =


∣∣∣∣∣cosω(

36
T
τ + αi j)

∣∣∣∣∣ for τ = nT

1 for τ , nT
(3)

whereT is a positive integer that controls the switching
interval.n is an nonnegative integer,αi j = 6(i−1)+ ( j−1),

i=1∼6 and j=1∼6. We refer to this case as HNN1. Figure 5
shows the LCGR forai j=0.3,ui j=0.5 andω=137◦. Figure
6 shows convergence time to some solution. The average
is calculated for105 trials. We can see that the limit cycles
are suppressed sufficiently and the variation of convergence
time is small forT .
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Figure 5: Limit cycle generation rate for HNN1
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Figure 6: Convergence time for HNN1 (average in105 tri-
als).

Next, we apply the TVTC only to one cell on the corner.
For simplicity, we consider the TVTC to the cell of(1, 1):

λ11(τ) =


∣∣∣∣∣cosω

τ

T

∣∣∣∣∣ for τ = nT

1 for τ , nT
λi j(τ) = 1 for (i, j) , (1, 1)

(4)

wheren is a nonnegative integer. We refer to this case as
HNN2. Figure 7 shows the LCGR forai j=0.3,ui j=0.5 and
ω=137◦. We can see that the limit cycles are suppressed
sufficiently forT = 5 andT = 9. Figure 8 shows conver-
gence time to some solution: it varies depending onT . We
have confirmed similar results in the case where either of
the other corner cells has the TVTC.

Outline of these results are summarized in Table1 that
shows relation between the LCGR and convergence time.
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Figure 7: Limit cycle generation rate for HNN2.
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Figure 8: Convergence time for HNN2 (average in105 tri-
als).

Cell that 

changes 

time 

constant

Limit cycle 

generation rate [%]
Convergence time

Best Worst Best Worst

25.2 0.16 58.9

0

(T=1,3,7,9)

4.3

(T=10)

0.05

(T=1)

334.4

(T=2)

0

(T=5,9)

13.9

(T=8)

0.16

(T=2)

1242

(T=10)

Time-variant time constant : Fixed time constant :

Table 1: The relation between the limit cycle generation
rate and convergence time.

4. Conclusion

We have considered performance improvement of HNN
in application to N-Queen problems. Applying the TVTC
to the case of 6-Queens, un-desired limit cycles can be sup-
pressed and desired solution is obtained. Especially, we
have confirmed that such a suppression is possible even if
the TVTC is applied to one corner cell only. Future pro-
blems include analysis of dynamics of HNN with TVTC
and application to wider problems.
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