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Abstract—We describe the reconstruction of bifurca-
tion diagrams with Lyapunov exponents for chaotic sys-
tems using only data from several time-series. The al-
gorithm, which was originally proposed by Tokunaga et
al., for reconstructing a bifurcation diagram with the cor-
responding Lyapunov exponents is as follows. First, we
model a dynamical system of several time-series by a time-
series predictor. In this paper, an extreme learning machine
is used as the time-series predictor. Next, we estimate the
number of significant parameters of the target dynamical
system from the modeled dynamical system by principal
component analysis. Then, we reconstruct the bifurcation
diagrams with the Lyapunov exponents of the target dy-
namical system. We show the results of numerical exper-
iments on the reconstruction of bifurcation diagrams with
Lyapunov exponents for the logistic and Hénon maps.

1. Introduction

The estimation of Lyapunov exponents is one of several
important methods used for the analysis of chaotic systems.
However, the targets of analysis among chaotic systems
were limited to only known systems.

Tokunaga et al. [1] have proposed reconstructing bifur-
cation diagrams from time-series data alone. This method
estimates the number of significant parameters and recon-
structs bifurcation diagrams of unknown systems. We have
proposed using extreme learning machines (ELMs) to re-
construct bifurcation diagrams [2, 3] because the computa-
tion time of this method is shorter than that of the conven-
tional method used by Tokunaga et al.. ELM is not only
the computation time is shorter but the prediction accuracy
also is higher for single time-series data.

In this paper, we estimate the Lyapunov exponents for
an unknown chaotic system using only the data of several
series [4, 5, 6].

2. Time-series Predictor

The reconstruction of the bifurcation diagram of a dy-
namical system uses the time-series predictor

y(t + 1) = G (w, y(t)) (1)

Figure 1: Structure of ELM.

where G(·) is a nonlinear function, y(t) and y(t + 1) are the
time-series to be predicted and the input and output of the
predictor, and w is learned connection weights.

In this paper, we use an ELM as the time-series predictor.
The ELM is a three-layer feed-forward neural network with
the structure shown in Fig. 1. The output of the lth hidden
neuron hl is

hl(t) = f

 K∑
k=1

w(h)
lk xk(t) + bl

 (2)

where w(h)
lk denotes the hidden weight from the kth input

neuron to the lth hidden neuron, bl is the bias of the lth
hidden neuron, and f (·) is the sigmoid function. The output
of the mth output neuron om is

om(t) =
L∑

l=1

w(o)
ml hl(t) (3)

where w(o)
ml denotes the output weight from the lth hidden

neuron to the mth output neuron. In this paper, the number
of output neurons M is set to be equal to the number of
input neurons K: that is, M = K. These numbers M and K
are set to be equal to the target dynamical system. W (o) is
obtained by the following linear regression for learning in
this model.

W (o) =
(
H−1D

)T
(4)

Here, T indicates transposition and H−1 is the pseudo-
inverse matrix of H. The matrices H, D and W (0) are given

2015 International Symposium on Nonlinear Theory and its Applications
NOLTA2015, Kowloon, Hong Kong, China, December 1-4, 2015

- 692 -



by

H =


h1(1) · · · hL(1)
...

. . .
...

h1(N) · · · hL(N)

 , (5)

D =


d1(1) · · · dM(1)
...

. . .
...

d1(N) · · · dM(N)

 , (6)

W (o) =


w(o)

1,1 · · · w(o)
M,1

...
. . .

...

w(o)
1,L · · · w(o)

M,L

 . (7)

3. Reconstruction of Bifurcation Diagrams

In this section, we describe the method for reconstruc-
tion of bifurcation diagrams using only time-series data.
We assume that the time-series data are generated by one
system and that this target system can be represented by
a smooth mapping of N points in a parameter space P =
[p(1), · · · , p(N)].

First, each set of time-series data is modeled by the
ELM. The output weights [w(o)(1),w(o)(2), · · · ,w(o)(N)]
corresponding to parameters [p(1), p(2), · · · , p(N)] are ob-
tained from Eq. (4). If the number of output neurons is
more than two, the output weight matrix becomes


w(o)(1)
...

w(o)(N)


T

=



w(o)
1,1(1) · · · w(o)

1,1(N)
w(o)

1,2(1) · · · w(o)
1,2(N)

...
. . .

...

w(o)
1,L(1) · · · w(o)

1,L(N)
w(o)

2,1(1) · · · w(o)
2,1(N)

...
. . .

...

w(o)
M,L(1) · · · w(o)

M,L(N)


. (8)

Next, we estimate a low-dimensional space of the out-
put weights by using principal component analysis. A
variance–covariance matrix Ω is constructed from the out-
put weights of Eq. (8):

Ω =


var(δw(o)(1)) · · · cov(δw(o)(1), δw(o)(N))
...

. . .
...

cov(δw(o)(N), δw(o)(1)) · · · var(δw(o)(1))

 (9)

where var (·) and cov (·, ·) denote variance and covariance,
respectively, and δw(o)(n) is given by

δw(o)(n) = w(o)(n) − w(o)
0 (n = 1, · · · ,N) (10)

with

w(o)
0 =

1
N

N∑
n=1

w(o)(n). (11)

We obtain the eigenvalues and eigenvectors of Ω by eigen-
value decomposition. The eigenvalues are arranged in de-
scending order

λ1 ≥ λ2 ≥ · · · ≥ λN . (12)

and the eigenvectors corresponding to eigenvalue λi is de-
noted ui. Then, δw(o) is determined by using the principal
component coefficients Γ = [γ1, γ2, · · · , γD] and the eigen-
vectors:

δw(o) = [u1, u2, · · · , uN]Γ (13)

where

Γ = [u1,u2, · · · ,uN]−1δw(o). (14)

Next, we determine the optimal dimension for δw(o) from
the eigenvalues. The contribution ratio E of the qth princi-
pal component and the cumulative contribution ratio CE to
λq from λ1 can be obtained from the following equations:

E =
λq∑D
i=1 λi

× 100[%], (15)

CE =

∑Q
q=1 λq∑D
i=1 λi

× 100[%]. (16)

We define a bifurcation path to be a sequence of points
(p(1)→ p(2)→ · · · → p(J)) in the parameter space of the
target system and a bifurcation locus to be a sequence of
points

(
γ(C)(1)→ γ(C)(2)→ · · · → γ(C)(J)

)
in the space of

the principal component coefficients. If the relations be-
tween the points in the bifurcation locus are preserved in
the bifurcation paths, then we can determine the space of
principal component coefficients that duplicates the param-
eter space of the target system.

By adding w(o)
0 to Eq. (13), a new output vector that can

be used in the reconstruction of the bifurcation diagram is
obtained

w̃(o) = [u1,u2, · · · ,uN]
[
γ(C)

0

]
+ w(o)

0 . (17)

The nonlinear map for the reconstruction of the bifurcation
diagram is then

y(t + 1) = G
(
w̃(o), y(t)

)
. (18)

4. Estimation of Lyapunov Exponents using Obtained
Nonlinear Map

We estimate the Lyapunov exponents using the obtained
nonlinear map[4, 5, 6]. The algorithm is as follows.

First, the Jacobian matrix of the nonlinear map G(·) in
Eq. (18) is decomposed by QR decomposition.

JG
(
w̃(o), y(t)

)
Qt = Qt+1Rt+1 (t = 0, · · · ,T ) (19)
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Figure 2: Bifurcation path of the logistic map.
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Figure 3: Bifurcation locus of the logistic map.

Here, Q is an orthogonal matrix (Q0 is the identity matrix),
R is an upper triangular matrix and

JG
(
w̃(o), y(t)

)
=


∂G(w̃(o)

1 ,y(t))
∂y1(t) · · · ∂G(w̃(o)

1 ,y(t))
∂yK (t)

...
. . .

...
∂G(w̃(o)

M ,y(t))
∂y1(t) · · · ∂G(w̃(o)

M ,y(t))
∂yK (t)

 . (20)

The Lyapunov exponents are obtained using the solution of
Eq.(19):

µi = lim
T→∞

1
T

T∑
t=1

log rii(t) (i = 1, · · · ,M) (21)

where rii(t) is the ith diagonal component of Rt.

5. Numerical Experiments

In this section, we show the results of reconstructions
of bifurcation diagrams with Lyapunov exponents for the
logistic and Hénon maps.
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Figure 4: Original bifurcation diagram with Lyapunov ex-
ponents of the logistic map.
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Figure 5: Reconstructed bifurcation diagram with Lya-
punov exponents of the logistic map.

5.1. Logistic Map

The logistic map, represented by

x(t + 1) = ax(t) (1 − x(t)) , (22)

has one parameter, a. We generated time-series data for a
9-tuple of parameter values of a determined by

ai = 0.15 cos (2π(i − 1)/8) + 3.7 (i = 1, · · · , L = 9). (23)

The bifurcation path is shown in Fig. 2. In the training pro-
cess, we set the number of input neurons, hidden neurons
and output neurons to 1, 15, and 1, respectively. The length
of the training data for each value of a was 1000. Figure
3 shows the bifurcation locus. The relation between points
in Fig. 3 are preserved in Fig. 2, so the space of the princi-
pal component coefficients is an approximation to the target
parameter space.

Figures 4 and 5 show, respectively, the original and
reconstructed bifurcation diagrams with Lyapunov expo-
nents. In Fig. 5, the Lyapunov exponent is negative in peri-
odic oscillation regions and is close to zero at the points of
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Figure 6: Original bifurcation diagram with Lyapunov ex-
ponents of the Hénon map.
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Figure 7: Reconstructed bifurcation diagram with Lya-
punov exponents of the Hénon map.

a period-doubling bifurcation. Furthermore, the Lyapunov
exponent in chaotic regions is positive. These results show
that the bifurcation diagram with Lyapunov exponent was
successfully reconstructed because they qualitatively coin-
side.

5.2. Hénon Map

The Hénon map, represented by

x(t + 1) = y(t) + 1 − ax2(t), (24)
y(t + 1) = bx(t), (25)

has two parameters, a and b. However, in this paper we
are considering the reconstruction of only one-parameter
bifurcation diagrams, so b is fixed at 0.3. We generated
time-series data for a 9-tuple of parameters values of a de-
termined by

ai = 0.2 cos (2π(i − 1)/8) + 1.2 (i = 0, · · · , L = 9). (26)

In the training process, we set the number of input neurons,
hidden neurons and output neurons to 2, 10, and 2, respec-

tively. The length of the training data for each value of a
was 1000.

Figures 6 and 7 show, respectively, the original and
reconstructed bifurcation diagrams with Lyapunov expo-
nents. In these figures, the solid and dashed lines show the
first and second Lyapunov exponents, respectively. These
figures show that the bifurcation diagram with Lyapunov
exponent of the Hénon map was also successfully recon-
structed because they qualitatively coinside.

6. Conclusion

In this paper, we have reconstructed bifurcation dia-
grams with Lyapunov exponents for the logistic and Hénon
maps by using an ELM. The results of simulation exper-
iments show successful reconstruction of bifurcation dia-
grams with corresponding Lyapunov exponents.

In future work, we will try to estimate other indices for
chaotic systems through the reconstruction of bifurcation
diagrams from time-series data.
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