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Abstract— Homotopy methods are known to be effective meth-
ods for finding DC operating points of nonlinear circuits with
the theoretical guarantee of global convergence. There are sev-
eral types of homotopy methods; as one of the most efficient
methods, the variable-gain homotopy (VGH) method is well-
known. However, the global convergence of the VGH method for
modified nodal equations (that are used in SPICE) has not been
theoretically guaranteed; actually, it sometimes fails to converge.
In this paper, we propose a modified algorithm of the VGH
method and prove its global convergence for modified nodal
equations. An experimental result is given to show the validity
of the theory.

I. INTRODUCTION

Finding DC operating points of nonlinear circuits is an
important and difficult task in circuit simulation. SPICE-like
circuit simulators, which are widely used in LSI design, em-
ploy the Newton-Raphson (NR) method for solving modified
nodal (MN) equations. However, the NR method or its variants
often fails to converge to a solution unless the initial point is
sufficiently close to the solution. Therefore, many circuit de-
signers experience difficulties in finding DC operating points,
especially for bipolar analog integrated circuits.

To overcome this convergence problem, globally convergent
homotopy methods have been studied by many researchers
from various viewpoints [1]–[18]. By these studies, the appli-
cation of the homotopy methods in practical circuit simulation
has been remarkably developed, and some of them succeeded
in solving bipolar analog circuits with more than 20,000
elements with the theoretical guarantee of global convergence
[7],[8],[10],[13].

There are several types of the homotopy methods; as one of
the efficient methods for solving bipolar circuits, the variable-
gain homotopy (VGH) method is well-known [2]–[6],[9],[11].
For this method, many studies have been performed from
various viewpoints [2]–[6],[9],[11]. The VGH method has also
been implemented in the circuit simulation package Sframe
[3],[9]. In [5] and [11], it is written that the VGH method
is one of the most efficient homotopy methods. However, the
global convergence of the VGH method for MN equations has
not been theoretically guaranteed; actually, it sometimes fails
to converge.

In this paper, we propose a modified algorithm of the
VGH method that is globally convergent for MN equations.
Namely, we show that a simple modification of the homotopy
function makes the VGH method globally convergent for MN
equations. We prove a theorem that guarantees the global
convergence of the proposed algorithm under mild conditions.

II. PRELIMINARIES

In this section, we first review the relation between the MN
equation and the modified cut-set (MC) equation [13], which
is necessary in the discussion of this paper.

A. MN Equation

In DC analysis, various elements in IC’s, such as bipolar
junction transistors (BJT’s), can be modeled with voltage-
controlled current sources (VCCS’s) in a wide sense [19],[20].
In this paper, for simplicity, we assume that the circuit consists
only of VCCS’s and independent sources. We also assume
that there are no loops consisting only of independent voltage
sources and no cut-sets consisting only of independent current
sources [19].

Let the number of nodes in the circuit be N +1, the number
of branches excluding the independent source branches be K,
and the number of independent voltage sources be M . Such a
circuit can be described by an MN equation of the form

f(x) = H1g(H1
T x) + H2x + σ = 0. (1)

In (1) the variable vector x ∈ Rn (n = N +M) is represented
as

x =
[

v
i

]
(2)

where v ∈ RN denotes the node voltages to the datum node
and i ∈ RM denotes the branch currents of the independent
voltage sources. Also, g : RK → RK is a VCCS-type
continuous function representing the relation between the
branch voltages vb ∈ RK and the branch currents ib ∈ RK of
the branches excluding the independent source branches and
is expressed as

ib = g(vb). (3)

In addition, H1 is an n×K constant matrix represented as

H1 =
[

Dg

0

]
(4)

and H2 is an n× n constant matrix represented as

H2 =
[

0 DE

DE
T 0

]
(5)

where Dg is an N × K reduced incidence matrix for the g
branches and DE is an N ×M reduced incidence matrix for
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the independent voltage source branches. Moreover, σ ∈ Rn

is the source vector that is represented as

σ =
[

J
−E

]
(6)

where J ∈ RN is the current vector of the independent
current sources and E ∈ RM is the voltage vector of the
independent voltage sources. From (2) to (6), (1) can be
written as follows:

fg(x) = Dgg(Dg
T v) + DEi + J = 0 (7a)

fE(v) = DE
T v −E = 0. (7b)

Most of the practical circuits, such as analog IC’s, can be
described by an MN equation of the form (7).

B. MC Equation

Next, we consider the MC equation. In the cut-set analysis
[20] the voltages of the branches that compose a tree in the
circuit are used as variables. The voltages of those branches
are called the cut-set voltages and denoted as u. Let the
reduced incidence matrix for the tree branches be T . Then,
the following relation holds [20]:

u = T T v. (8)

The MC equation is an extension of the cut-set equation to
circuits containing independent voltage sources (as was done
in the MN equation). By adding the branch currents of the
independent voltage sources as variables such as

x =
[

u
i

]
(9)

we can formulate an equation of the form similar to (1). Such
an equation is called the MC equation.

Since the reduced incidence matrix T of a tree is nonsin-
gular, there exists T−1 [4]. Then, by applying the variable
transformation v = (T−1)T u to (7) and then multiplying (7a)
by T−1 from the left, the MN equation (7) is transformed into
the MC equation. Therefore, by considering Dg and DE as
the fundamental cut-set matrices and J as the cut-set current
sources, (1) and (7) can be regarded as the MC equation.

Depending on the choice of the tree, the MC equation will
result in different equations. A special case is the previously
discussed MN equation. That is, by connecting imaginary
branches with zero conductance between the datum node and
all the other nodes, and by forming a tree with those imaginary
branches, an MC equation that is essentially equivalent to the
MN equation is obtained. Therefore, we can consider that the
MC equation includes the MN equation [21].

C. Fundamental MC Equation

As another special case of the MC equation, we can
consider a fundamental MC equation that is defined as follows.
Consider a tree that consists of all independent voltage source
branches and some of the g branches. Since it is assumed
that there are no loops consisting only of independent voltage
sources, there always exists a tree containing all independent

voltage source branches. Then, formulate an MC equation for
that tree. In this process, without loss of generality, we can re-
arrange the order of the branches so that the first N branches
are the tree branches and, furthermore, the first M branches of
the tree branches are the independent voltage source branches.
The equation thus formulated is referred to as the fundamental
MC equation.

In the fundamental MC equation DE is represented by the
following simple form:

DE =
[

1M

0

]
(10)

where 1M is an M×M identity matrix. Also, by separating the
first M rows and the remaining N−M rows and by separating
the first N −M columns and the remaining K − (N −M)
columns, Dg is represented as

Dg =
[

DgE

Dgg

]
=

[
0 DglE

1N−M Dglg

]
. (11)

Therefore, the fundamental MC equation (7) is written in the
following form:

fgE(x) = DgEg(Dg
T u) + i + JE = 0 (12a)

fgg(u) = Dggg(Dg
T u) + Jg = 0 (12b)

fE(uE) = uE −E = 0. (12c)

Here, the variable vector u ∈ RN is represented as

u =
[

uE

ug

]
(13)

where uE ∈ RM and ug ∈ RN−M denote the branch
voltages of the independent voltage source branches and those
of the g branches that compose the tree, respectively. Also,
JE ∈ RM and Jg ∈ RN−M are represented as

J =
[

JE

Jg

]
. (14)

Since (12) has a simpler form than (7) it can be analyzed more
easily than (7).

III. VGH METHOD

In this section, we review the VGH method for solving the
MN equation (1) or (7).

For the simplicity of discussion, we assume that the relation-
ship between the branch voltage vector vq = (vbe, vbc)T and
the branch current vector iq = (ie, ic)T of a bipolar junction
transistor is described by the Ebers-Moll model:

iq(vq) =
[

1 −αr

−αf 1

] [
me(exp(nevbe)− 1)
mc(exp(ncvbc)− 1)

]
. (15)

In the homotopy methods, we consider an auxiliary equation
f0(x) = 0 with a known solution x0 (or a solution easily
obtained) and define a homotopy function:

h(x, λ) = λf(x) + (1− λ)f0(x) (16)

where λ ∈ [0, 1] is the homotopy parameter. Then, the solution
curve (often called the path) of the homotopy equation:

h(x, λ) = 0 (17)
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is traced from the initial point (x0, 0) at λ = 0. Such trace is
often called the path following. If the solution curve reaches
the λ = 1 hyperplane at (x∗, 1), then a solution x∗ of (1) is
obtained.

The VGH method [2]–[6],[9],[11] uses the following homo-
topy function termed the VGH :

h(x, λ) = f(x, λα) + (1− λ)G(x− a) (18)

where α is a vector consisting of forward current gains αf

and reverse current gains αr of transistors, G is an n × n
diagonal matrix, a is a random vector that gives a bifurcation-
free homotopy path (i.e., the homotopy path is bifurcation-free
for almost all a), and λα implies that the current gains of all
transistors are multiplied by λ. The VGH method is a two-
stage procedure. In phase 1, the initial point x0 that satisfies
h(x, 0) = 0 is computed by the modified NR method. In phase
2, the solution curve of h(x, λ) = 0 is traced from (x0, 0). In
phase 1, the circuit described by h(x, 0) = 0 contains diodes
as only nonlinear elements, hence it has a unique solution.

The VGH method is efficient because it contains the ex-
cellent idea of variable-gain, which often makes the path
following smooth. However, the initial point computed by the
modified NR method is sometimes far from the solution [16].
In other words, the initial state at λ = 0 is sometimes far
from the normal operation of transistor circuits. In [18], an
efficient method is proposed, where we first determine a good
initial point x0 and then determine a such that x0 becomes the
solution of h(x, 0) = 0 using the SPICE-oriented approach.
It is also shown in [18] that the VGH method can be easily
implemented on SPICE without programming, although we do
not know the homotopy method well.

IV. PROPOSED METHOD

It is easily seen that (18) is equivalent to

h(x, λ) = f(x) + (1− λ)f̃(x) + (1− λ)G(x− a) (19)

where

f̃(x)
4
=

[
Dgg̃(DT

g v)
0

]
. (20)

Here, the components g̃i (i = 1, 2, · · · ,K) of g̃ = (g̃1, g̃2,
· · · , g̃K)T are defined as follows:

1) If gi and gi+1 are a pair of transistor branches, then the
corresponding functions g̃i and g̃i+1 are
[

g̃i

g̃i+1

]
=

[
0 αr

αf 0

] [
me(exp(nevbe)− 1)
mc(exp(ncvbc)− 1)

]
.

(21)
2) If gi is not a transistor branch, then g̃i = 0.

Hence, (18) becomes as follows:

f(x) + (1− λ)f̃(x) + (1− λ)G(x− a) = 0. (22)

In general, an n× n matrix

G =
[

GN 0
0 GM

]
(23)

is used as G, where GN and GM are N ×N and M ×M di-
agonal matrices, respectively, with positive diagonal elements.

However, this VGH method sometimes fails to converge for
MN equations. In this paper, we use

G =
[

GN 0
0 −GM

]
(24)

as G and show that this simple modification makes the VGH
method globally convergent for MN equations.

From (7), the homotopy function is written as

hg(x, λ) = Dgg(Dg
T v) + DEi + J

+(1− λ)Dgg̃(DT
g v)

+(1− λ)GN (v − aN ) (25a)

hE(x, λ) = DE
T v −E − (1− λ)GM (i− aM )

(25b)

where hg : Rn+1 → RN , hE : Rn+1 → RM , and

a =
[

aN

aM

]
. (26)

We now define the following terminology [22].
Definition 1: A continuous function g : RK → RK is said

to be uniformly passive on v0
b if there exists a γ > 0 such that

(vb − v0
b)

T (g(vb)− g(v0
b)) ≥ γ‖vb − v0

b‖2 for all vb ∈ RK .
2

A fairly general class of resistive elements including BJT’s,
diodes, tunnel diodes, and positive linear resistors are known
to be uniformly passive on certain points [22]. Thus, the
uniform passivity is a very mild condition. If all resistive
elements contained in the circuit are uniformly passive, then
the following theorem holds.

Theorem 1: Consider the VGH given by (25). Assume that
g is Lipschitz continuous and there exists a v0

b ∈ RK such
that g is uniformly passive on v0

b . Then, for any initial point
x0 ∈ Rn the solution curve of h(x, λ) = 0 starting from
(x0, 0) reaches λ = 1. 2

Since the proof of this theorem is very long, it is omitted
here. By this theorem, the global convergence of the VGH
method using the homotopy (25) is theoretically guaranteed
for most of the practical circuits.

V. EXAMPLE

We implemented the proposed algorithm on SPICE3 using
the SPICE-oriented approach proposed in [18]. We have
applied the proposed algorithm to several practical circuits
and have obtained good results. In this section, we show an
example to confirm the validity of the theory.

Consider the regulator circuit shown in Fig. 1 that is used
in bipolar LSI’s. Note that this circuit cannot be solved by
the DC analysis of SPICE3. We applied the standard VGH
method using (23) as G and the proposed VGH method using
(24) as G where GN and GM are N×N and M×M identity
matrices, respectively. Fig. 2 shows the solution curves of the
standard method and the proposed method starting from the
initial points x0 such that v0

q = (0.7, 0)T for npn transistors
and v0

q = (−0.7, 0)T for pnp. It is seen that the standard
method diverged but the proposed method converged to the
solution.

- 509 -



X28 Q2
X3

Q1

R3
10k

Q3

Q7 Q8

R4  2k

Q9

R7
11k

R1
29.6k

Q5
X2

Q6
X2

R2
12k

R5
30k

Q4

R6
10k

Q10 Q11

Q13
R8
10k

R10
10k

Q12
Q14

X3
Q15

R9

560

R12

10k Q16

R11
15k

RLOAD

420

Q19

Q18

Q17 Q24

Q21Q20

R13
10k

R15
100k

Q23Q22

R14
5k

VCC
5V

i

Fig. 1. Regulator circuit.
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Fig. 2. Solution curves.

VI. CONCLUSION

In this paper, we have shown that the VGH method becomes
globally convergent for MN equations by using (24) as G. The
experimental result shows the validity of the theory.
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