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Abstract—A simple model of spiking neurons is pro-
posed by Izhikevich. Some experimental results, origin of
the mathematical model, firing pattern of all known types
of neurons are reported. However bifurcation analysis has
not been investigated in details. In this paper, we propose
a method to trace bifurcation sets for a piecewise nonlinear
equations with state-dependent jump and investigate bifur-
cations of equilibrium and periodic solutions for this sys-
tem.

1. Introduction

There are two main approaches in biological fields re-
cently. The first method consists in an actual experimental
analysis. The second method consists in development of
mathematical models based on available data and knowl-
edge of dynamical systems. As the experimental technique
develops, a great number of genetic data and the data of
the model organism have been accumulated. According to
this, many mathematical models have been proposed. In
order to verify a model, the results of the simulation should
match the experimental results. For the progression of bi-
ological science, the focus is put on the development of
mathematical models.

A simple model of spiking neurons is proposed by
Izhikevich[1]. The biologically plausibility of the model is
as good as that of the Hodgkin-Huxley-type model. Some
experimental results, by changing parameters, firing pat-
tern of all known types of neurons are illustrated. However
bifurcation analysis has not been investigated in detail. In
this paper, first of all, we propose a method to trace bifur-
cation sets for a piecewise nonlinear equations with state-
dependent jump. We define a piecewise-defined system,
its solution and limit cycle. Next, we investigate bifurca-
tions of equilibrium and periodic solutions for this system.
Bifurcation diagrams are obtained numerically and chaotic
regions are clarified.

2. Analyzing method

Let us consider m autonomous differential equations

dx
dt
= fk(x, λ, λk), k = 0, 1, 2, · · · ,m − 1 (1)

where t ∈ R, x ∈ Rn. λ ∈ Rr is an invariant parameter
for f 0, f 1, · · · f m−1 and λ ∈ Rs is a parameter depending
only on f k. r and s are integers. We call these equations
piecewise-defined differential equations. Assume that f k is
C∞-class map for all variables and parameters and every
equation in Eq.(1) has a solution with an arbitrary initial
value xk0, such that

xk(t) = ϕk(t, xk0), xk(0) = xk0 (2)

Assume also that the function changes from f k to f k+1
when a solution ϕk starting from Πk reaches Πk+1 with the
time τk. Thus

xk+1(t) = ϕk(t, xk) (3)

where

xk+1(0) = ϕk+1(0, xk+1) = ϕk(τk, xk) (4)

Then a periodic solution (limit cycle) is written as follows:

x0 = xm = ϕm−1(τm−1, xm−1) (5)

Note that the solution Eq.(5) is continuous, but not differ-
entiable for all states. We place local section for this limit
cycle at every break point defined by the following scalar
function qk:

Πk = {xk ∈ Rn | qk(xk) = 0}, k = 0, 1, 2, · · · ,m − 1 (6)

The following local mappings are defined:

T0 : Π0 → Π1

x0 �→ x1 = ϕ0(τ0, x0)
T1 : Π1 → Π2

x1 �→ x2 = ϕ1(τ1, x1)
· · ·

Tm−1 : Πm−1 → Π0

xm−1 �→ x0 = ϕm−1(τm−1, xm−1)

(7)

Poincaré mapping is defined as a differentiable composite
map descried by

T = T0 ◦ T1 ◦ · · ·Tm−1 (8)

Hence, the period of the limit cycle τ is obtained by

τ =
m−1∑
k=0

τk (9)
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The derivative with the initial value of the Poincaré map is
given by

∂T
∂x0

∣∣∣∣
t=τ
= Πm−1

k=0
∂Tk

∂xk

∣∣∣∣
t=τk

(10)

Each Jacobian matrix can be written as follows:

∂Tk

∂xk
=
∂ϕk

∂xk
+
∂ϕk

∂t
∂τk

∂xk
=
∂ϕk

∂xk
+ f k
∂τk

∂xk
(11)

We should remark that the function

qk(xk) = qk(ϕk(τk, xk)) = 0 (12)

is differentiable for xk. Thereby

∂qk

∂xk

(∂ϕk

∂xk
+ f k
∂τk

∂xk

)
= 0 (13)

then we have the following relationship from Eq.(13)

∂τk

∂xk
= − 1
∂qk

∂x
f k

∂qk

∂x
∂ϕk

∂xk
(14)

By substituting Eq.(14) into Eq.(11), we have

∂Tk

∂xk
=
∂ϕk

∂xk
− 1
∂qk

∂x
f k

f k
∂qk

∂x
∂ϕk

∂xk

=

[
In − 1

∂qk

∂x
f k

f k
∂qk

∂x

]∂ϕk

∂xk

(15)

where In is an n × n identity matrix. ∂ϕk/∂xk can be ob-
tained by solving the following differential equation

d
dt

(
∂ϕk

∂xk
) =
∂ f k

∂x
(
∂ϕk

∂xk
)

∂ϕk

∂xk

∣∣∣∣
t=0
= In

(16)

Now we define a local coordinate w ∈ Σ0 ⊂ Rn−1 cor-
responding to Π0 by using a projection p and embedding
map p−1

p−1 : Σ0 → Π0, p : Π0 → Σ0 (17)

Accordingly, the Poincaré mapping on the local coordinate
is obtained as

T� : Σ0 → Σ0

w �→ p ◦ T ◦ p−1(w)
(18)

A fixed point of the Poincaré mapping is obtained by solv-
ing the following equation

T�(w) − w = 0 (19)

The Jacobian matrix required Newton’s method is give by

∂T�
∂w0
= DT�(w0) =

∂p
∂x
∂T
∂x0

∂p−1

∂w
(20)

The characteristic equation for the fixed point is given by

χ�(μ) = det[DT� − μIn−1] = 0 (21)

The roots of Eq.(21) give multipliers of the fixed points.
We can obtain accurate location of the fixed point w and bi-
furcation parameter value λ by solving the following equa-
tion by Newton’s method

F(w, λ) =
[

T�(w) − w
χ�(μ)

]
= 0 (22)

3. An application for Izhikevich model

Izhikevich proposed a simple model of spiking neurons.
There are two features in this model. First, it doesn’t
cost the calculation cost more than Hodgkin-Huxley-type
model. Second, it confirmed a lot of firing patterns. The
equation set are as follows:{

v̇ = 0.04v2 + 5v + 140 − u + I
u̇ = a(bv − u)

(23)

then reset after it spikes:

if v ≥ 30 mV, then

{
v← c
u← u + d

(24)

where, the state variables v and u correspond to the mem-
brane potential of the neuron and membrane recovery vari-
able, respectively. The parameters are a, b, c, d and I.
Here, a, b, and I related with the time scale of the recovery
variable, the sensitivity of the recovery variable u to v and
Synaptic current, respectively. c and d are reset value. Af-
ter the spike reaches its apex, the state variable v and u are
reset according to Eq. (24).

In the following, we restate the method of analysis for
this model. Let solutions be the following equations:{

v(t) = ϕ0(t, u0, λ0, λ)
u(t) = φ0(t, u0, λ0, λ)

(25)

We place local section for the limit cycle at every break
point defined:

Π0 = {(v, u) ∈ R2 | q(v, u) = v − V = 0} (26)

Local section and local mappings are defined as follows:

T0 : Π0 → Π0

v0 �→ v1 = c
u0 �→ u1 = φ0(t, u0, λ0, λ) + d

(27)

Thus, we have

T = T0 (28)

We choose the projection and embedding as follows:

h : Π0 → Σ x =
(

v
u

)
�→ u = u

h−1 : Σ→ Π0 u = u �→ x =
(

V
u

) (29)
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The Jacobian matrix of the Poincaré mapping is as follows:

∂T�
∂u0

=
(

0 1
) ⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0

− f2
f1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ∂ϕ∂x0

(
0
1

)

= − f2
f1

∂ϕ1

∂u0
+
∂ϕ2

∂u0

(30)

We can obtain the location of the fix point and bifurcation
parameter value by applying Newton’s method.

4. Bifurcation phenomena for Izhikevich model

We observed a rich variety of firing patterns, changing
the parameters a, b, c and d by Eq. (23) and (24). For
example, when a = 0.02, b = 0.2, c = −65, d = 8 and a =
0.1, b = 0.2, c = −65, d = 2 are set, it is regular spiking
(RS) and fast spiking(FS). It is thought that the bifurcation
to divide those firing patterns exists shown in Fig. 1. Then,
we clarify that by showing the bifurcation of fixed point.
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Figure 1: The firing patterns of neurons [1].

5. Bifurcation of fixed point

We compute bifurcation diagrams in the a-b plane by us-
ing the value of parameter c and d shown in Fig. 1. Figures
2 and 4 show the bifurcation diagrams with I = 10. Figure
2, 4 are the bifurcation diagrams fixed to c = −55, d = 4
and c = −50, d = 2 respectively. Hence, saddle-node bifur-
cation for an equilibrium is labeled by d and subscript of
these symbols show numbers of unstable. Symbol I k show
period-doubling(PD) bifurcations of a k-periodic limit cy-
cle.

In the Fig. 2 there exists an island surrounded by PD
bifurcation curves. Inside this, the limit cycle(Fig. 3(a))
is bifurcated by PD cascade; I i, i = 1, 2, 4, · · ·∞. Figure
3(b) is two-periodic and Fig. 3(c) is four-periodic solution,
respectively. Via PD cascade, we have chaotic attractor, see
Fig. 3(d). For b > 0.6, bifurcation structure is not sensitive
to variations of b.

In the Fig. 4, we see that there confirmed right-hand side
region which has a limit cycle state. Since there exist PD
cascades along the arrow(⇒), chaotic states are easily ex-
pected (Fig. 5). Moreover, period-adding can be confirmed
by the arrow(→) and the attractor is shown in Fig. 5. Figure
6 is an expansion of Fig. 4.

The bifurcations of fixed point don’t exist when the val-
ues of parameter c and d are fixed to c = −65, d = 0.05,
c = −65, d = 2, and c = −65!$d = 8. When param-
eters c = −65, d = 2 are fixed, we observed fast spik-
ing(FS) with a = 0.1, b = 0.2, low-threshold spiking(LTS)
with a = 0.02, b = 0.25 and resonator(RZ) with a = 0.1!$
b = 0.26. However, there are no bifurcation that divides
those states. That is to say, the state of the transition is
deeply related.
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Figure 2: Bifurcation diagram int the a-b plane with c =
−55, d = 4, I = 10.
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Figure 3: Phase portraits with a = 0.025, v-u plane. (a)
Period-1 orbit, b = 0.2. (b) Period-2 orbit, b = 0.21. (c)
Period-4 orbit, b = 0.48. (d) Chaos, b = 0.55.
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Figure 4: Bifurcation diagram int the a-b plane with c =
−50, d = 2, I = 10.
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Figure 5: Phase portraits with b = 0.5, v-u plane. (a)
Period-4 orbit, a = 0.003. (b) Period-5 orbit, a = 0.007.
(c) Period-6 orbit, a = 0.0125. (d) Chaos, a = 0.0158.

6. Conclusion

We propose dynamical system described by piecewise-
defined functions. The Poincaré sections are defined at the
break points and the Poincaré mapping is constructed as a
composite map of local mappings. We investigated the be-
havior of the Izhikevich model with state-dependent jump,
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Figure 6: Bifurcation diagram int the a-b plane with c =
−50, d = 2, I = 10.

and computed its bifurcation sets. Bifurcation structure
and chaotic parameter regions are clarified in the param-
eter plane. Moreover, the state of the transition is deeply
related to classify characters of the firing patterns in this
model.
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