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Abstract—Predator-prey models have been at-
tracting the interest of researchers in the field of non-
linear dynamics for many decades. In this contribu-
tion, we present a novel predator-prey model based
on two coupled populations of Hopfield-type neurons.
The model exhibits a rich structure of fixed points and
periodic and quasi-periodic solutions. We explore it by
means of numerical simulations and support our find-
ings with analytical arguments. Furthermore, we show
that the equilibrium equations of our model can be
understood as meanfield equations of a magnetic spin
model. This finding provides an interesting interpre-
tation of predator-prey dynamics in terms of different
magnetic phases.

1. Introduction

The study of predator-prey models has a long tra-
dition in the field of non-linear dynamics. Starting
from the famous Lotka-Volterra model, a variety of
extensions and novel approaches have been introduced
[1, 2]. These developments serve as a playground for
the study of non-linear phenomena. These models
show a considerable diversity of different dynamics,
but they all use the same structural elements. They
all deal with two interacting populations. The first
population suppresses the second population, but the
second population encourages the growth of the first
population.

In this contribution, we present a model that adopts
the basic structure of predator-prey systems and ap-
plies it in the context of Hopfield-type neural networks.
Each population is modelled by a set of all-to-all cou-
pled Hopfield neurons [4]. The influence of one popu-
lation on the other population is modelled by a neu-
ral meanfield. This allows us to introduce asymmet-
ric couplings in the symmetric Hopfield model. Using
symmetry properties, the number of system param-
eters can be reduced. As a consequence, we obtain
a simple system of two coupled difference equations
with two system parameters. These equations can be
shown to be equivalent to the meanfield equations of
an Ising spin model, opening a novel perspective for
the study and interpretation of predator-prey models.
When studying the system, a varied behaviour of pe-
riodic and quasi-periodic orbits is revealed.

In the following sections, we introduce our model
and present some first numerical results as well as some
supportive analytical results.

2. The Model

We consider a discrete time version of the Hopfield
network [4] with constant all-to-all couplings. The dy-
namics for one population of neurons are governed by
the following equations

xi(t + 1) = f(
∑

j

Jxj(t) + hi(t)) (1)

where xi(t) ∈ [−1, 1] is the activity of neuron i at
time t, J is the symmetric coupling between neurons,
including self-coupling, and hi is an external input.
For the transfer function f we choose f(.) = tanh(.),
which is the smooth version of the sign function that
is usually used for Hopfield networks.

The predator-prey situation is modelled by two pop-
ulations of neurons of sizes Npred and Nprey. xpred-
type neurons are coupled with Jpred, all-to-all within
the predator population. xprey-type neurons are cou-
pled with Jprey within the prey population.

The neurons of the two populations are not coupled
directly. Instead, they are affected by each other’s
neural meanfields, for which the coupling is positive in
the case of predator neurons and negative in the case
of prey neurons. Using this trick, we can circumvent
the problem of symmetric couplings in Hopfield models
and establish the asymmetric interaction which is a
property of predator-prey models.

Concretely, each predator neuron is exposed to an
additional input of magnitude

hprey = Jc1 · xprey. (2)

xprey = 1
Nprey

∑Nprey

i=1 xprey
i is the average acitivity of

the prey population and Jc1 > 0. Similarly, each prey
neuron is exposed to

hpred = −Jc2 · xpred. (3)

with Jc2 > 0. The couplings are visualised in Fig.1.
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Figure 1: Two Hopfield populations with neural field coupling

In summary, the activity within the network can be
described by the following equations

xpred
i (t + 1) = f


∑

j

Jpredxpred
j (t) + hprey




xprey
i (t + 1) = f


∑

j

Jpreyxprey
j (t) + hpred


(4)

For the following examinations we make the assump-
tions N = Npred = Nprey, J1 = NJpred = NJprey and
J2 = Jc1 = Jc2 . Then equations (4) can be reduced
to a two-dimensional map of the variables m1 = xpred

and m2 = xprey, if the neurons within each popula-
tion are initialised uniformly (i.e. m1(0) = xpred

i (0) ∀i
and m2(0) = xprey

j (0) ∀j). Hence, our final system’s
equations are

f1 : m1(t + 1) = tanh (J1m1(t) + J2m2(t))
f2 : m2(t + 1) = tanh (J1m2(t)− J2m1(t)) (5)

2.1. Relationship to Spin Systems

Equations (5) are equivalent to a meanfield model of
Ising spins. These are binary variables si ∈ {−1, 1}. In
this section, we sketch the main characteristics of this
analogy. A detailed discussion will be given elsewhere
[6].

In the spin picture, we characterise the predator-
prey system as a system of two spin populations p1 =
{spred

i } and p2 = {sprey
i } with a Hamiltoninan (or en-

ergy function) H. It is the sum of a predator part
Hpred and a prey part Hprey. Treated in the canonical
ensemble, the Hamiltonian determines the probability
of a spin configuration s = (s1, ..., s2N ) (of both pop-
ulations) via the Boltzmann distribution

p(s) =
1
Z

e−βH(s) (6)

where Z is a normalisation constant and the scaling
factor can be chosen as β = 1.

Adopting the coupling convention from above, the
Hamiltonian decomposition is

Hpred = −
∑

i,j∈p1

J1s
pred
i spred

j −
∑

i

J2〈sprey
i 〉

Hprey = −
∑

i,j∈p2

J1s
prey
i sprey

j +
∑

i

J2〈spred
i 〉 (7)

where the sums are over all i, j with i 6= j, 〈si〉 =∑
si∈{−1,1} p(si)si and p(si) is the marginal probabil-

ity for si obtained from p(s).
By applying the meanfield assumption (see [6]), we

obtain

m1 = tanh (J1m1(t) + J2m2(t))
m2 = tanh (J1m2(t)− J2m1(t)) (8)

with m1 = 〈sprey
i 〉 and m2 = 〈spred

i 〉. Hence the
meanfield equations (8) correspond to the equilibrium
equations of (5). The dynamics described by (5) can
be understood as a message passing procedure whose
fixed points yield the magnetisations of the spins in
the meanfield approximation. This interpretation is
not completely new as a relationship betweeen the dy-
namics in Hopfield networks and the belief propagation
message passing algorithm for solutions in the Bethe
approximation has already been established [5].

3. Results

3.1. Numeric Simulations

Numeric simulations reveal that the system (5) ex-
hibits stable fixed points as well as stable periodic and
quasi-periodic orbits. In Fig. 2, four examples for dif-
ferent parameter settings are shown, using the initial
values m1 = 0 and m2 = 0.5.

A more systematic examination shows that
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Figure 2: Typical orbits for four different parameter
settings: a stable fixed point, stable periodic orbits of
periods 4 and 8 and a quasiperiodic orbit.

Figure 3: The emergence of stripes of periodic and
quasi-periodic solutions in the parameter space. Fur-
ther explanations are given in the text.

• for J2
1 + J2

2 < 1 there is one unique stable fixed
point (0, 0).

• For large J1, J2 and J2 >> J1 there is a stable
period-4 orbit.

• For large J1, J2 and J1 >> J2 there are four sta-
ble fixed points near (1, 1),(−1,−1),(−1, 1) and
(1,−1).

• There are stripes of periodic and quasiperiodic or-
bits in between. E.g. for J1 = J2 (and J1 >
1/
√

2) we have a stable period-8 orbit.

In Fig. 3, the situation in the parameter space is de-
picted for the initialisation values (m1 = 0, m2 = 0.5).
The diagram shows the periodicity in dependence on

Figure 4: The bifurcation diagram for J2 = 3 in the
m1−projection

the parameter values in colour code. The periodic-
ity was identified via the autocorrelation function, for
which the position of the first non-central peak was de-
termined. Although this simple method fails to detect
orbits of very high periodicity or quasi-periodic orbits,
it yields a qualitatively correct picture of the differ-
ent periodicity stripes in the parameter space. The
existence of areas wtih oribits of extremely high peri-
odicity or with quasi-periodic orbits becomes apparent
from phase plots such as the one shown in Fig. 2 or
from bifuraction diagrams (Fig. 4).

3.2. Analytical Results

In this section, we derive a couple of analytical re-
sults that can explain the larger areas of the plot in
Fig. 3.

Proposition 3.1 For pairs of parameters (J1, J2)
within the unit circle (i.e. if J2

1 + J2
2 < 1), the dy-

namics of equations (5) is a global contraction with
fixed point m1 = m2 = 0.

Proof: Obviously m1 = m2 = 0 is a fixed point. We
now show that the spectral norm ||Df || of the Jacobian
Df of (5) is confined by ||Df(0, 0)|| < 1 if J2

1 +J2
2 < 1.

This is a sufficient condition for a global contraction
since ∀m1,m2, ∃ξ : |f(m1)−f(m2)| ≤ ||Df(ξ)|| · |m1−
m2| and hence |f(m1)−f(m2)| ≤ λ|m1−m2|, ∀m1, m2

and λ = ||Df(0, 0)|| < 1. The spectral norm ||A|| of
a real matrix A is defined as the square root of the
absolute value of the largest eigenvalue of AT A [3].
The Jacobian of (5) is

Df =
(

J1a J2a
−J2b J2b

)
(9)

with a = 1 − tanh2(J1m1 + J2m2) and b = 1 −
tanh2(J1m2 − J2m1). The matrix DfT Df is inher-
ently diagonal and the eigenvalues can be read out

- 543 -



directly

DfT Df =
(

λ1 = (J2
1 + J2

2 )a2

λ2 = (J2
1 + J2

2 )b2

)

(10)
Since tanh2(J1m1 + J2m2) ∈ [0, 1], we have |a| ≤ 1
and |b| ≤ 1 and λ1,2 ≤ J2

1 + J2
2 for all (m1,m2).

The maximum is achieved for m1 = m2 = 0. Hence
||Df || ≤ ||Df(0, 0)|| =

√
J2

1 + J2
2 < 1 and a global

contraction is given for J2
1 + J2

2 < 1 ¤

Proposition 3.2 For J2 >> J1 >> 1 there is a sta-
ble period-4 orbit.

Sketch of the proof: We do not give a full tech-
nical proof for this proposition and for the next two
propositions. Instead we sketch the proofs in the limit
of infintely large couplings and use it as plausibility
argument for finite couplings. More elaborated proofs
are based on the perturbation theory [6].

Since J2 >> J1 the maps can be reduced to f1 =
tanh(J2m2) and f2 = − tanh(J2m1). Thus we can
decouple the maps when applying twice: g1(m1) =
f1(f2((m1)) = − tanh(J2 tanh(J2m1)) and g2(m2) =
f2(f1((m2)) = − tanh(J2 tanh(J2m2)). Both identical
maps have an orbit of period 2 given by 1,−1 in the
limit of very large couplings. They correspond to the
following period-4 orbit of the original coupled map:
(1, 1), (1,−1), (−1,−1), (−1, 1). Now we show that
m∗ = ±1 are stable fixed points of g2

1 and g2
2 . For this

we need to consider the derivatives, e.g. (g2
1,2)

′(1) =
g′1,2(1) · g′1,2(−1). Since |g′1,2(1)| = |g′1,2(−1)| = 0, the
orbit of g is stable and hence the whole period-4 orbit
of f is stable.

Proposition 3.3 For J1 >> J2 >> 1 there are a
four stable fixed points near (1, 1),(−1,−1),(−1, 1) and
(1,−1).

Sketch of the proof: Since J1 >> J2 the maps can
be reduced to the decoupled maps f1 = tanh(J1m1)
and f2 = tanh(J1m2). For each map we find the
two fixed points m1,2 = ±1 in the limit of very
large couplings. These fixed points are stable since
f ′1,2(m1,2) = 0. Hence the total map f has four sta-
ble fixed points which result from the combinations
m1,2 = ±1.

Proposition 3.4 For J1 = J2 >> 1 there is a stable
period-8 orbit.

Sketch of the proof: It is straightforward to verify
that (1, 1), (1, 0), (1,−1), (0,−1), (−1,−1), (−1, 0),
(−1, 1), (0, 1) is a period-8 orbit in the limit of very
large couplings. The stability can be verified by con-
sidering the Jacobian of f8. Since it can be decom-
posed using the chain rule and since all the (par-
tial) derivatives are 0 for the points of the orbit and
J1,2 →∞, the orbit must be stable.

4. Discussion

We have presented a novel model of two coupled
populations of Hopfield-like neurons, using a predator-
prey coupling scheme. Simulations revealed an inter-
esting structure of regions of stable fixed points and
stripes of periodic and quasi-periodic solutions. The
general structure of the parameter space can be de-
rived from the interpretation of the model in terms of
a meanfield spin model:

• For small couplings between the populations and
between the individuals (J2

1 + J2
2 < 1), the sys-

tem is in the paramagnetic phase, where the
magnetisation is m = 0. The neurons behave as
uncoupled individuals.

• For J1 >> 0 and J2 ≈ 0, i.e. strong internal
couplings and weak couplings between the pop-
ulations, the system is in the ferromagnetic
phase (m = ±1), where each population be-
haves as an isolated ferromagnet. Hence we ob-
serve the four combinations for the magnetisation
(m1 = 1,m2 = 1), (1,−1), (−1, 1), (−1,−1).

• For J2, J1 >> 0, the system is in a frustra-
tion phase: the two ferromagnetic populations
are frustrating each other due to the asymmet-
ric interaction. For J1 = J2, the dynamics of
the system result in the orbit of period 8, where
one state is always flipped: (1, 1), (1, 0), (1,−1),
(0,−1), (−1,−1), (−1, 0), (−1, 1), (0, 1)

The analytical examination and characterisation of
the periodicity stripes is an interesting issue in our
ongoing research.
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