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Abstract—Among all chaotic generators, 1D discrete
maps are characterized by their simplicity and suitabil-
ity for digital implementation, in addition to their widely
spread applications. Generalizations on 1D discrete maps
enhance their unpredictability and increase their reliabil-
ity in secure communication and encryption. In this pa-
per, three parameterized maps are discussed: scaled pos-
itive logistic map (SPLM), scaled mostly positive logistic
map (SMPLM), and scaled tent map (STM). The impacts
of the introduced scaling parameters on the properties of
each map are discussed including: the bifurcation diagram
versus the main system parameter, the main keypoints, the
maximum chaotic range, and calculation of maximum Lya-
punov exponent (MLE) versus all system parameters.

1. Introduction

Chaos, first defined by Lorenz [1], is identified with non-
periodicity and sensitive dependence on initial conditions
and characterized by its complicated dynamics. Chaotic
generators, especially 1D maps, are employed in many
fields such as: biology, chemistry, physics [2], encryp-
tion [3, 4], finance, and others. This explains the need for
their analog and digital realizations [5–8]. Early contri-
butions on 1D discrete chaotic maps are owed to May [9]
and Feigenbaum [10]. Simple iterative relations may ex-
hibit chaotic behavior for some ranges of the involved pa-
rameters. Some of these relations are non-linear, e.g., the
logistic map (LM) [2] given by

xn+1 = f (xn, λ) = λxn(1 − xn), λ ∈ [0, 4], xn ∈ [0, 1], (1)

and the recently proposed mostly positive logistic map
(MPLM) [11] given by

xn+1 = f (xn, r) = −rxn(1 − xn), r ∈ [0, 2], xn ∈ [−0.5, 1.5],
(2)

while others are piece-wise linear such as the tent map
(TM) [2] given by

xn+1 = f (xn, µ) = µmin (xn, 1 − xn) , µ ∈ [0, 2], xn ∈ [0, 1],
(3)

where xn is the iterated variable, while λ, r, and µ are the
system parameters for each map respectively. Bifurcation
appears in the form of change of the type of steady state
solution versus parameter; from fixed point, followed by

a period doubling, quadrupling, etc., that accompanies the
onset of chaos. Figure 1 shows the bifurcation diagrams of
the three maps previously defined. Since chaos also rep-
resents rapid divergence of nearby points, a quantity that
measures the rate of this divergence would be quite useful.
Theoretically, chaotic behavior is associated with a posi-
tive value for the maximum Lyapunov exponent (MLE) [2]
given by

MLE = lim
n→∞

1
n

n−1∑
i=0

ln | f ′(xi)|

 , (4)

where ln is the natural logarithm. For TM, the maximum
chaotic behavior is recorded at µmax = 2 with MLE = ln 2.
This value could be proved for TM and by conjugacy for
LM at λmax = 4 [2], similarly for MPLM at rmax = 2. Fig-
ure 1 indicates this value for the three maps. The rest of
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Figure 1: Bifurcation diagram and MLE versus λ, r, and µ
for (a) LM, (b) MPLM, and (c) TM respectively

this paper discusses the properties of three generalized ver-
sions of the previously defined maps employing scaling pa-
rameters. Three sections are devoted to the scaled positive
logistic map (SPLM), scaled mostly positive logistic map
(SMPLM), and scaled tent map (STM) respectively. For
each map, the allowed ranges of parameters, fixed points
and their stability, and MLE versus all the parameters of the
generalized map are discussed. The impacts of the added
scaling parameters on multiple properties of each map are
studied emphasizing on maximum chaotic response. These
properties include: the value of the main system parameter
at which maximum chaos occurs, the corresponding output
range, and the calculated MLE. The last section concludes
the main contributions of the paper.
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2. Scaled Positive Logistic Map (SPLM)

In this map, two parameters a and b are added to allow
scaling both horizontal and vertical axes of the bifurcation
diagram and getting different system responses w.r.t. each
parameter according to [11]. The map is given by

f (x, λ, a, b) = λx(a − bx), λ, a, b ∈ R+, (5)

and is plotted as shown in Fig. 2(a).
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Figure 2: Function plot, cobweb diagram, and time wave-
form of chaotic (a) SPLM, (b) SMPLM, and (c) STM

2.1. Range of λ

The roots of the map, its critical point xc, and its maxi-
mum value xmax are given by:

f (x) = 0 for x = 0,
a
b
, (6a)

xc =
a

2b
, f (xc, λmax, a, b) =

a2λmax

4b
≤

a
b
→ λmax ≤

4
a
.

(6b)
This inequality not only provides us with information on
the maximum value of the parameter λ, but also that of
the parameter a. Therefore, the maximum values for the
parameters of the map are:

(λmax, xmax) =

(
4
a
,

a
b

)
, (7a)

a ∈ (0, amax] where amax =
4
λ
, (7b)

where confining x to the interval x ∈ [0, a/b] ensures
bounded output for all iterations. Figure 2(a) shows the
cobweb diagram and time waveform at λmax indicating
chaotic behavior in the full range.

2.2. Fixed Points and Stability Condition

The fixed points are given by x∗ = f (x∗, λ, a, b), then

x1
∗ = 0 and x2

∗ =
1
b

(
a −

1
λ

)
. (8)

The absolute value of the first derivative w.r.t. x at the fixed
points determines whether they are stable or unstable when
it is less or greater than “one” respectively. Otherwise, if
the absolute value equals “one”, then it is called a bifurca-
tion point. Therefore, the values of λ at which the system
bifurcates and their corresponding function values are

(λb, xb) =

{(
1
a
, 0

)
,

(
3
a
,

2a
3b

)}
. (9)

Figures 3(a) and (b) show snapshots of the bifurcation dia-
grams versus the main parameter λ at different values of
a while b is fixed, and different values of b while a is
fixed respectively. The diagrams indicate that the value
of λmax depends on the parameter a only irrespective of b,
while both parameters have an impact on the output range
which is consistent with the previous analysis. The same
results could be derived in another way using the substi-
tution xn = (a/b)yn in the iterative relation corresponding
to (5) that yields a map quite similar to LM except that
its parameter equals λa instead of λ. Thus, the output of
SPLM is (a/b) times that of LM and its parameter is (1/a)
times that of LM.

(a) (b)

Figure 3: Bifurcation diagram vs. λ for SPLM at (a)
b = 2 and a = {0.25, 0.5, . . . , 2} and (b) a = 4 and
b = {0.25, 0.5, . . . , 2}

2.3. Maximum Lyapunov Exponent

Figure 4(a) shows 3D plot of MLE as a function of both
λ and a at b = 2 for SPLM. It illustrates the dependence of
the allowed range of λ on the value of a according to equa-
tion (7a) where λmax is independent of b. The parameter
b has no impact on the range of the main system param-
eter as shown in Fig. 4(b). However, the value of MLE
approaches the same steady state value of ln 2 for maxi-
mum chaotic behavior, or at λmax. Figure 4(c) shows the
values of MLE at λmax in the a−b plane indicating that set-
ting the main system parameter to λmax corresponding to
a achieves maximum chaotic behavior irrespective of b. It
could be proved using the substitution defined in the previ-
ous subsection and the chain rule of derivatives that MLE of
SPLM is the same as that of LM with parameter λa instead
of λ. A similar proof could be conducted for SMPLM. Fig-
ure 4(d) shows the maximum chaotic output in the a − b
plane where generally the lower and upper bounds on the
range are constrained by the values of a and b according
to equation (7a). In order to get a wider output range, we
could increase a and/or decrease b.
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Figure 4: MLE of SPLM as a function of (a) λ and a at
b = 2, (b) λ and b at a = 4, (c) a and b at λmax, and (d)
Full-range chaotic output versus a and b

(a) (b)

Figure 5: Bifurcation diagram vs. r for SMPLM at (a)
d = 2 and c = {0.25, 0.5, . . . , 2} and (b) c = 4 and
d = {0.25, 0.5, . . . , 2}

3. Scaled Mostly Positive Logistic Map (SMPLM)

The mostly positive logistic map has been proposed
in [11] analyzing its properties in unity scaling case, and
extending the analysis to a scaled version utilizing two pa-
rameters c and d. The general equation of SMPLM is given
by

f (x, r, c, d) = −rx(c − dx), r, c, d ∈ R+. (10)

Its properties could be derived similar to SPLM where

(rmax, xmin, xmax) =

(
2
c
,−

c
2d
,

3c
2d

)
, (11a)

c ∈ (0, cmax] where cmax =
2
r
, (11b)

(rb, xb) =

(
1
c
, 0

)
. (12)

Figure 2(b) indicates that the map exhibits full range
chaotic behavior at rmax. Figure 5 shows that the depen-
dence of the SMPLM on the parameters c and d could be
described in a similar way to that of SPLM on the parame-
ters a and b respectively. Figure 6 shows the impact of both
c and d on MLE and chaotic output that could be described
similar to SPLM.

4. Scaled Tent Map (STM)

The scaled tent map proposed in [12] preserves the lin-
earity of the two intersecting lines providing the possibility

(a) (b)

(c) (d)

Figure 6: MLE of SMPLM as a function of (a) r and c at
d = 2, (b) r and d at c = 4, (c) c and d at rmax, and (d)
Full-range chaotic output versus c and d

of designing an asymmetric scalable tent shape.

f (x, µ, e, f ) = µmin(x, e − f x), µ, e, f ∈ R+, (13a)

f (x, µ, e, f ) =

{
µx x ≤ xk

µ(e − f x) xk < x , xk =
e

1 + f
. (13b)

4.1. Ranges, Fixed Points, and Stability Condition

The solution should belong to the interval x ∈ [0, e/ f ] to
guarantee boundedness.

(µmax, xmax) =

(
1 +

1
f
,

e
f

)
, (14a)

f ∈ (0, fmax] where fmax =
1

µ − 1
. (14b)

Figure 2(c) shows full chaos at µmax. The fixed points are
given by

x∗1 = 0 and x∗2 =
eµ

1 + fµ
. (15)

The value of µ at which the system bifurcates and the region
of trivial fixed point ends, in addition to its corresponding
function value is

(µb1, xb1) = (1, 0). (16)

For 0 < f < 1, a region of non-trivial fixed point appears
after which the response bifurcates to a period-2 solution
given by

(µb2, xb2) =

(
1
f
,

e
2 f

)
. (17)

Figure 7 shows that the impact of parameters is reversed in
the case of STM compared to logistic map(s). The value of
µmax depends only on the parameter f .

4.2. Maximum Lyapunov Exponent

Unlike logistic map(s), the allowed range of µ depends
on the parameter f only irrespective of e. The largest value
for MLE at µmax in the e − f plane is obtained at f = 1
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(a) (b)
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Figure 7: Bifurcation diagram vs. µ for STM at (a)
f = 0.5 and e = {0.25, 0.5, . . . , 2}, (b) e = 4 and f =

{0.2, 0.3, . . . , 0.8}, (c) f = 2 and e = {0.25, 0.5, . . . , 2}, and
(d) e = 4 and f = {2, 3, . . . , 8}

(µmax = 2) irrespective of the value of e, and equals ln 2.
Although this value slightly decreases for other values of f ,
it is still within the same positive range indicating chaotic
behavior. Yet, the full range at maximum chaos depends on
e/ f similar to logistic map(s) as shown in Fig. 8.

5. Conclusion

The impact of scaling parameters on the properties of
three generalized maps has been studied. In each map, a
term in the form of (m − nx) appears where m and n are
the scaling parameters. The lower and upper bounds on
the output range of each map are scaled by m/n. Thus, the
maximum output range could be controlled through adjust-
ing their values. For scaled positive and mostly positive
logistic maps, the value of the system parameter at which
maximum chaotic behavior or full output range is achieved
depends on the value of m. On the other hand, for scaled
tent map it depends on the parameter n. In both cases, the
main system parameter and the scaling parameter are in-
versely related. Maximum Lyapunov exponent and chaotic
outputs in the m−n plane have been calculated. The results
show that the maps exhibit controllable chaotic behavior
that could be adapted using the introduced parameters to fit
requirements of various applications.
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