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Abstract– We experimentally demonstrate parallel 

implementation of photonic decision making for solving the 

multi-armed bandit problem using a spatial light modulator, 

a camera, and a semiconductor laser. We achieve 

experimental decision making in a multi-armed bandit 

problem with up to 512 slot machines using chaotic 

spatiotemporal dynamics generated from the semiconductor 

laser. 

 

1. Introduction 

Reinforcement learning has been used in various research 

fields, and the multi-armed bandit problem [1] is an 

example of reinforcement learning. The goal of the multi-

armed bandit problem is to maximize the total rewards in 

which a player repeatedly selects multiple slot machines 

with different unknown hit probabilities. To solve the multi-

armed bandit problem, two actions of "exploration" and 

"exploitation" must be balanced, and the two actions are in 

a trade-off relationship. Exploration is an action to search 

for the slot machine with the highest hit probability by 

selecting multiple slot machines randomly. On the contrary, 

exploitation is an action to repeatedly play the slot machine 

with the highest hit probability estimated by the exploration 

to increase the total rewards.  

Photonic decision making for solving the multi-armed 

bandit problem has been reported using chaotic 

semiconductor lasers [2-4] based on the tug-of-war method 

[5,6]. In particular, a method using multiple temporal 

waveforms of semiconductor lasers has been proposed to 

solve the multi-armed bandit problem with up to 1024 slot 

machines numerically [6]. However, this method requires 

the same number of semiconductor lasers as the number of 

slot machines. It is difficult to experimentally demonstrate 

decision making for a large number of slot machines using 

this method.  

An experimental implementation of reservoir computing 

has been reported using a spatial light modulator [7,8]. A 

network with a large number of nodes can be realized by 

utilizing the parallelism of spatial light. It is expected to 

solve the multi-armed bandit problem with many slot 

machines using spatial light modulator.  

In this study, we demonstrate the generation of 

spatiotemporal dynamics using an optoelectronic feedback 

system with a semiconductor laser, a camera, and a spatial 

light modulator. We perform decision making for solving 

the multi-armed bandit problem using this optoelectronic 

feedback system. 

 

2. Methods 

Our experimental setup is shown in Fig. 1. The laser 

beam emitted from a collimator becomes a spherical wave 

by passing through a spatial filter, and is injected into a 

spatial light modulator. The spatial light modulator 

modulates the phase of the incident light by the input 

voltage of the pixels on the spatial light modulator. Intensity 

modulation can be achieved by combining two polarizers 

and the spatial light modulator. The intensity-modulated 

laser output is captured by a CMOS camera and transmitted 

to a computer. The post processing of the detected image is 

performed in the computer and the image signal is fed back 

to the spatial light modulator. Then, the spatial light 

modulator modulates the phase of the laser light with a new 

input values. Thus, spatiotemporal dynamics can be 

generated by repeating the detection and feedback of the 

image in the optoelectronic feedback system. 

 

 
 

Fig. 1 Experimental setup for spatiotemporal dynamics 

using optoelectronic feedback system with 

semiconductor laser, camera, and spatial light modulator. 

 

 

The intensity dynamics of this feedback system for each 

pixel can be can be modeled as follows. 

 

𝐼𝐶𝐴𝑀 = 𝑎 ∙ cos(2𝜋𝑓𝐼𝑆𝐿𝑀) + 𝑏 (1) 

 

where 𝐼𝐶𝐴𝑀 is the value of the macro pixel on the camera, 

𝐼𝑆𝐿𝑀  is the value of the macro pixel on the spatial light 
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modulator. 𝑎 is the amplitude of the intensity modulation, 𝑓 

is the frequency of the intensity modulation, and 𝑏  is the 

bias of the intensity modulation. 

The feedback signal from the computer to the spatial light 

modulator can be described as follows. 

 

𝐼𝑆𝐿𝑀(𝑡 + 1) = 𝛽 ∙ 𝐼𝐶𝐴𝑀(𝑡) (2) 

 

where 𝛽 is the feedback strength and it is the parameter that 

determines the spatiotemporal dynamics. 

From Eqs. (1) and (2), one-dimensional map of the 

feedback system for each pixel can be written as follow. 

 

𝐼𝐶𝐴𝑀(𝑡 + 1) = 𝑎 ∙ cos(2𝜋𝑓𝛽𝐼𝐶𝐴𝑀(𝑡)) + 𝑏 (3) 

 

Equation (3) shows that the spatiotemporal dynamics 

generated by the feedback system is based on a sinusoidal 

function 

 

3. Generation of spatiotemporal dynamics 

In this section, we observe spatiotemporal dynamics 

generated in the experimental setup. A bifurcation to chaos 

is observed by changing the feedback strength. Figure 5 

shows the spatiotemporal dynamics at the feedback strength 

𝛽 = 3.2. Irregular spatiotemporal patterns are observed at 

the different number of iterations in Fig. 2. 

 

 

 
 

Fig. 2 Spatiotemporal patterns of spatial light modulator at 

four successive iterations at the feedback strength 𝛽 = 3.2. 

 

 

4. Experiment on decision making 

4.1 Decision-making method 

In this section, we describe the decision-making 

procedure. Figure 3 shows a scheme for decision making 

using spatiotemporal dynamics. Slot machines are assigned 

to macro pixels of the spatial light modulator. The temporal 

dynamics of macro pixels are used for slot machine 

selection. The bias is added to the temporal waveform of 

each macro pixel as follows. 

 

𝐹𝑖(𝑡) = 𝐶𝑖(𝑡) + 𝑘𝑋𝑖(𝑡) (4) 

 

where 𝐶𝑖(𝑡) is the chaotic temporal waveform of i-th macro 

pixel, 𝑘 is the bias coefficient, 𝑋𝑖(𝑡) is the bias of i-th macro 

pixel. We select the i-th slot machine corresponding to the 

maximum value of the temporal waveforms among the 

biased signal 𝐹𝑖(𝑡). The bias is updated based on the reward 

of the selected slot machine as follows. 

 

𝑋𝑖(𝑡) = 𝑄𝑖(𝑡) −
1

𝑛 − 1
∑ 𝑄𝑖′(𝑡)

𝑛

𝑖′≠𝑖
(5) 

𝑄𝑖(𝑡) = 𝛥𝑊𝑖 − 𝜔𝐿𝑖 (6) 

𝛥 = 2 − (�̂�𝑡𝑜𝑝1 + �̂�𝑡𝑜𝑝2) (7) 

𝜔 = �̂�𝑡𝑜𝑝1 + �̂�𝑡𝑜𝑝2 (8) 

�̂� =
𝑊𝑖

𝑁𝑖

(9) 

 

where 𝑁𝑖 is the number of selection for the i-th slot machine, 

𝑊𝑖 is the number of “hits” for the i-th slot machine,  𝐿𝑖 is 

the number of “miss” for the i-th slot machine, �̂�  is the 

estimated hit probability of the i-th slot machine. Decision 

making is achieved by iteratively selecting one of the slot 

machines and updating the bias. 

 

 

Fig. 3 Correspondence between spatiotemporal 

dynamics and slot machines. 

 

 

Table 1 Parameter settings for multi-armed bandit problem 

Hit probability of slot machine 1 0.7 

Hit probability of slot machine 2 0.5 

Hit probability of slot machine 3 0.9 

Hit probability of slot machine 4 0.1 

Hit probability of slot machine 2m+1 0.7 

Hit probability of slot machine 2m+2 0.5 

Reward 0 or 1 

Number of cycles 128 

Number of plays per cycle 10000 

Bias coefficient k 15 

iteration = 1

iteration = 3 iteration = 4

iteration = 2
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4.2 Parameter settings 

The parameter values for the multi-armed bandit problem 

are summarized in Table 1. Here, m is an integer (𝑚 ≥ 2) 

and the bias coefficient k is the parameter used in Eq. (4). 

 

 

5. Results 

5.1 Evaluation of decision making 

In this study, the correct decision rate (CDR) and the 

regret are used for the quantitative evaluation of decision-

making performance. CDR is the rate of the cycles in which 

the correct decision is made. When 𝑛  cycles of decision 

making are conducted with 𝑚 plays, CDR at the t-th cycle 

is defined as follows. 

 

𝐶𝐷𝑅(𝑡) =
1

𝑛
∑ 𝐶(𝑖, 𝑡)

𝑛

𝑖=1
    (1 ≤ 𝑡 ≤ 𝑚) (10) 

𝐶(𝑖, 𝑡) = {
     1  (Selection of correct slot machine)

0                     (otherwise)                  
 

 

where 𝐶(𝑖, 𝑡)  is the function that returns 1 if the selected 

slot machine is the correct slot machine, and 0 otherwise.  

Regret is defined as the difference between the ideal total 

reward and the actual reward. 

 

𝑅𝑒𝑔𝑟𝑒𝑡(𝑡) = 𝑡 𝑃𝑚𝑎𝑥 −
1

𝑆
∑ ∑ (𝑃𝑖 𝑁𝑙,𝑖(𝑡))

𝐼

𝑖=1

𝑆

𝑙=1
(11) 

 

where 𝑃𝑚𝑎𝑥  is the maximum hit probability, 𝑆  is the total 

number of cycles, 𝑃𝑖   is the hit probability of the i-th slot 

machine, 𝑁𝑙,𝑖   is the number of selection for the i-th slot 

machine up to the 𝑡-th play in the 𝑙-th cycle.  

 

 

5.2 Experimental results 

Figure 4(a) shows the results of CDR for 8, 64, and 512 

slot machines. CDR is larger than 0.95 and correct decision-

making is achieved up to 512 slot machines. Figure 4(b) 

shows the scalability of number of plays for 𝐶𝐷𝑅 = 0.95 as 

the number of slot machines is changed. The graph is 

approximated by a power law. The exponent of 0.902 of the 

power law is obtained as the number of slot machine N 

increases. 

Figure 5(a) shows the results of regret for 8, 64, and 512 

slot machines. Regret converges to a larger value as the 

number of the slot machines increases. Figure 5(b) shows 

the scalability of the final value of the regret as the number 

of slot machines is changed. The exponent of 0.923 is 

obtained as the number of slot machine increases. These 

values of the power are smaller than those obtained in the 

literature [3,4]. 

 

 

6. Conclusion 

In this study, we experimentally generated chaotic 

spatiotemporal dynamics in an optoelectronic feedback 

system with a semiconductor laser, a camera, and a spatial 

light modulator. Chaotic spatiotemporal dynamics were 

observed by using a large feedback strength β. The 

generated chaotic spatiotemporal dynamics were applied to 

a decision-making experiment with a large number of slot 

machines. We experimentally succeeded in solving the 

multi-armed bandit problem with up to 512 slot machines. 

The scalability of the number of plays for CDR = 0.95 and 

regret were the exponents of 0.902 and 0.923 as the number 

of slot machine N is changed. These exponents are smaller 

than those obtained from the previous studies. 

 

 

 
 

Fig. 4 (a) Results of correct decision rate (CDR) for 8, 64, 

and 512 slot machines. (b) Scalability of the number of 

plays for 𝐶𝐷𝑅 = 0.95 as the number of slot machines N is 

changed. 
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Fig. 5 (a) Results of regret for 8, 64, and 512 slot machines. 

(b) Scalability of the number of plays for 𝐶𝐷𝑅 = 0.95 as 

the number of slot machines N is changed. 
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