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Abstract—The calyx of Held is a giant glutamatergic

synapse in the auditory system. Short-term plasticity (ei-

ther facilitation and depression) have been observed exper-

imentally and in proposed biophysical models of the sys-

tem. Because of the large number of discrete release site

for the vesicles (which in turn drive the gating process at

the synapse), the random process of vesicle release is mod-

elled as a continuous differential equation. We propose a

new stochastic discrete model of vesicle release and show

that even for large pools of release sites, the short-term

plasticity of the system deviates from the continuous model

as the number of available docked vesicles decreases. We

compare results of this new stochastic-discrete biophysical

model with the previous deterministic-contiunous biophys-

ical model and with models derived from synaptic trans-

mission data obtained from the rat cortex.

1. Introduction

Synaptic transmission of an action potential (AP) be-

tween neurons is governed by the lossy electrical transmis-

sion of the AP voltage pulse along the synaptic pathway. At

the post-synaptic terminal this electrical impulse triggers

the release of chemical neurotransmitters which cross the

gap junction and initiate the corresponding electrical sig-

nal at the output neuron. Successful transmission depends

on the availability of sufficient neurtransmitter at particu-

lar vesicle docking sites located at the output terminus of

the synapse. A large synapse, such as the calyx of Held,

may have as many as 3000 such release sites, while smaller

synapses in the cortex may have only between one and ten.

Of course, for the AP arriving at the synaptic output ter-

minus to be successfully propagated to the output neuron

there must be sufficiently many release sites with docked

vesicles. Stimulation with a train of action potentials may

deplete this pool of docked vesicles and therefore decrease

the post-synaptic potential (PSP) observed at the output

neuron. This depletion of docked vesicles provides a model

for experimentally observed synaptic depression (that is,

inhibition of PSP response) which provides an example of

short-term plasticity in neural information processing. For

the calyx of Held this phenomenon has been verified in [1].

In this paper we describe a model of short-term synap-

tic depression in the calyx of Held [1]. This model repre-

sents the population of vesicle release sites, and the frac-

τr = 2.5 sec.

ne = 0.056

k = 193200

α = 4

C0 = 0.034 mM

τ f = 0.0252 sec. n f = 0.091

τi = 8 sec. ni = 0.003

τb = 0.6 sec. nb = 0.21

τD = 0.05 sec. nD = 3.3

Table 1: Parameter values (from [1]) used to simulate the

calyx of Held. For details of the model, see Sec. 2.

Note that the standard unit for calcium concentration in this

model is milli-M.

tion of these which are occupied, as a continuous quan-

tity. Change of that quantity is governed by a differential

equation. This is a reasonable approximation to make for

the calyx of Held, as the number of release sites is fairly

large. However, for cortical synapses the population is

much smaller. We adapt the model presented in [1] for the

case of a small population and when each site is released

and refilled stochastically. We explore the dynamics of this

system and show that the qualitative behaviour is similar to

that observed in the cortical synapse of a rat [4].

In the next two sections we introduce our model, and

describe our analysis. In Sec. 4 we conclude.

2. Model

We first describe the biophysical model of synaptic

transmission at the calyx of Held presented in [1]. We then

describe our adaptations of this model for finite populations

of vesicle release sites.

In the calyx of Held the number of vesicle docking sites

is large (of the order of 1800-3000 [1, 3]) and that popula-

tion can be approximated as a continuous variable. Let n(t)

denote the fraction of available docking sites with a docked

vesicles, and let p(t) denote the probability of a given vesi-

cle being released upon arrival of an AP. Let the δ-function

denote the arrival of action potentials (δ(t) = 0 for t , 0

and
∫ k

−k
δ(t)dt = 1) at time ts. The vesicle population is then

controlled by the continual reoccupation of empty docking
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sites (with rate τr) and the incremental response ne to an

AP. Hence,

dn

dt
= (1 − n(t))

[

1

τr

+ neδ(t − ts)

]

− T (t)δ(t − ts) (1)

p(t) = 1 − exp
(

−k([Ca2+]i)
α
)

(2)

T (t) = n(t)p(t) (3)

where T (t) is proportional to the quantity of neurotrans-

mitter released after an AP, and [Ca2+]i is the amount of

calcium ions present in the synapse. The parameters k and

α are determined experimentally and dictate the rate of re-

lease. The availability of calcium ions is modelled by the

following system of four ordinary differential equations

[Ca2+]i = C0c1(t) (4)

dc1

dt
=

c2(t) − c1(t)

τ f

+ n f δ(t − ts) (5)

dc2

dt
=

i(t)

τi

+
b(t)

τb

− [ni + nbT (t)]c2(t)δ(t − ts) (6)

di

dt
= −

i(t)

τi

+ nic2(t)δ(t − ts) (7)

db

dt
= −

b(t)

τb

+ nbT (t)c2(t)δ(t − ts) (8)

where the various parameters τ f , τi, τb, n f , ni, nb control

the relative rates of the various terms and C0 is a constant

of proportionality. The Eqns. (5) and (6) account for cal-

cium facilitation and suppression and the i(t) and b(t) terms

in Eqn. (6) are the activity in the inactivated and blocked

calcium channels. One can note that Eqns. (6), (7) and (8)

form a closed system such that c2+i+b is constant. Finally,

the PSP is given by

R(t) = T (t)(1 − D(t)) (9)

dD

dt
= −

D(t)

τd

+ (1 − D(t))ndT (t) (10)

where D(t) models desensitisation of the output. The vari-

ous parameters in this model are assigned values (adopted

from [1]) according to Table 1.

This is the model proposed by [1], in Fig. 1 we illustrate

the model behaviour. One can observe short term depres-

sion of the PSP in response to continued stimulation at a

fixed frequency. To account for the effect of the finite pool

size we modify this system as follows.

Let ND denote the total number of docking sites, and n
(k)

d

the occupancy state of docking site k, k = 1, . . . ,ND

n
(k)

d
=

{

1, if site k is occupied

0, otherwise

and analagous to Eqn. (1), we now have that

n(t) =
1

Nd

Nd
∑

k

n
(k)

d
(t) (11)
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Figure 1: Short term synaptic depression in the continuous

model of the calyx of Held. In this figure we recalculate the

results presented in [1]. Panel (A1) and (A2) show the time

course of the PSP response for stimulation at a constant

rate (from top to bottom, that it 10, 20, 50 and 100 Hz).

The lower panels show the release probability p(t) (B) and

the docking site occupancy n(t) (C).

The individual vesicle docking sites’ occupancy and their

tally n(t) are now defined to be constant between AP events.

Upon the arrival of an AP, an occupied docking site dis-

charges its vesicle and become empty with probability p(t),

given by Eqn (2), above. The probability of an unoccupied

docking site acquiring a vesicle is given by q(t)

q(ts) =

∫ t−s

t+
s−1

(1 − n(t))dt

τr

+ ne(1 − (n(t−s )) − T (t)(12)

which is obtained by integrating the rate equation (1) over

the interval between successive APs ts−1 and ts. Since we

make the approximation that n(t) = n(t+
s−1

) = n(t−s ) for all

t ∈ (ts−1, ts) we can simplify this to give the transition prob-

ability

q(ts) = (1 − (n(t−s ))

(

1

τr

+ ne

)

− T (t). (13)

This dynamic can be summarised in the following transi-

tion matrix

n
(k)

d
(ts−1) = 0 n

(k)

d
(ts−1) = 1

n
(k)

d
(ts) = 0 1 − q(ts) p(ts)

n
(k)

d
(ts) = 1 q(ts) 1 − p(ts)

(14)

The remaining equations (2)-(10) are unchanged.

Figure 2 illustrates the release process for stochastic-

discrete simulations with Nd = 3000 and with Nd = 6. For

large Nd the ensemble average and the single realisation are

close, and close to the results obtained with the continuous

model (Fig. 1). Nonetheless, the initial rate of depression
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Figure 2: Short term depression in the stochastic-discrete

model of synaptic transmission. On the left are results for

Nd = 3000 and on the right for Nd = 6. The upper panels

(labelled A1) depict PSP for stimulation at 10, 20, 50 and

100 Hz. The lower panels show the release probability p(t)

(panels B). In each case we illustrate an ensemble average

of 50 trials (solid blue lines) and single random representa-

tive (green dashed line).

in the discrete model is faster and more abrupt, particu-

larly at 100 Hz. This is plausible because when the docking

sites are depleted of vesicles, the continuous model and the

equivalent discrete model diverge. That is, the relatively

small number of docked vesicles, rather than the large num-

ber of total docking sites, becomes important. For the case

Nd = 6 the small sample effect and quantisation in the out-

put are both evident. In the next section we explore this

model in more detail and study it’s behaviour compared to

real time series data.

3. Dynamics

In [4] we describe a computational study of time series

data collected from single pairs of cortical neurons in rats.

The data (described in more detail in [2] and in [4]) is ob-

tained from 300 µm slices of the somatosensory cortex of

Wistar rats (12–21 days old). Brief current pulses (4 ms,

0.6-1.5 nA) were used to stimulate presynaptic APs, and

the resulting EPSPs were recorded in the postsynaptic cell.

The stimulation sequence was designed to appear “natu-

ralistic” and followed a doubly stochastic, inhomogeneous

Poisson process. Typical data from this procedure is de-

picted in Fig. 3 along with representative model perfor-

mance.

From this figure we see that the experimental data and
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Figure 3: The upper panel depicts the model response

(Nd = 6) to a simulated naturalistic sequence of APs. The

lower panel depicts the response of a rat cortical synapse

to the same sequence. Horizontal axis is the time inter-

val between successive APs (log scale) and the vertical

axis is the corresponding PSP. In the upper panel quanti-

sation as a result of the limited number of vesicle docking

sites is evident. To emphasise this feature, data points are

colour coded based on the number of docked vesicle in the

model upon the arrival of the AP (0, black; 1, red; 2, green;

3, blue; 4, cyan; 5, magenta; 6, yellow). The same fea-

ture is not immediately obvious in the experimental data.

Nonetheless, Fig. 4 does demonstrate that similar quanti-

sation can be found in the experimental data.

the biophysical model described here share similar fea-

tures. The most striking difference between the biophys-

ical model and the data is the quantisation evident in the

model. Nonetheless, in Fig. 4 we compute stimulation in-

terval dependent histograms and show that the same band-

ing (quantisation) evident in the model is also present in the

experimental data, albeit somewhat obscured by noise.

In order to probe whether the short term depression ev-

ident in the models (Fig. 1 and 2) is also present in the

data we need to reconstruct, from the data, an approxima-

tion to the dynamical system underlying the data. In Fig.

5 we illustrate the result of this calculation. The modelling

procedure is described at length in [4], and full details are

available from the first author. In brief, we construct an en-

semble of radial basis models to predict the next PSP from

the last de PSPs and the current stimulation interval ts−ts−1.

This ensemble is then averaged (using a procedure detailed

in [4]) to remove statistical anomalies, and we find that the

result is both robust and repeatable. For sufficiently large de

we find that the results are also fairly robust between differ-

ent values of de. In [4] we show that these models exhibit a

wide range of dynamic behaviour, including bifurcation in
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Figure 4: Banded histograms for the experimental data in

Fig. 3. For discrete bands of interspike intervalues separate

histograms are computes and plotted. This ensemble dis-

play highlights the same quantisation evident in the model

is also present in the data. Note the characteristic repeating

ridges in the histograms, corresponding to the quantisation

resulting from the small discrete number of possible occu-

pied release sites.

asymptotic dynamics and chaotic dynamics. In the current

discussion we focus only on the short term depression of

the synaptic response to stimulation at a fixed frequency.

From Fig. 5, we find that the short term depression in

the biophysical models is also evident in the model built di-

rectly from the data. In Fig. 5 the depression is most accen-

tuated at the highest frequencies. However, the data-driven

models do have additional characteristics that are not well

explained from the biophysical model. In all model simu-

lations we observe a slight, but systematic recovery follow-

ing stimulation at a fixed frequency (that is, the curves in

Fig. 5 are not non-increasing). This feature, if genuinely

representative of the data, would not be expected to occur

in the biophysical models as these models are constructed

only to show depression. Finally, we note that the vari-

ance between trials (shown as bars in Fig. 5) is comparable

to experimental variation in data reported from [1] in the

calyx of Held. Nonetheless, it remains to be determined

whether this variance in Fig. 5 is stochastic or related to

the nonlinear determinism suggested by [4].

4. Conclusion

From the data driven perspective, the focus of this re-

port, and [4] are slightly different. In [4] we constructed

bifurcation diagrams and showed that models of synap-

tic transmission built from experimental data can exhibit

a rich range of bifurcations and chaos. The focus was on

examining the asymptotic behaviour for a wide range of

stimulation rates (the stimulation interval ts − ts−1) and we

showed that varying the stimulation rate can lead to be-

haviour changing from stable period-one to higher order

periodic dynamics or apparently chaotic variation. In the
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Figure 5: Short term depression in the data driven model of

synaptic transmission. The model is built from the data in

Fig. 3 and 4 and depends on an embedding dimension de.

On the left are results for de = 13 and on the right results

for de = 19. Each panel depicts mean PSP for stimulation

at 10, 20, 50 and 100 Hz (compare with previous figures la-

belled A1). In each case we illustrate an ensemble average

of 50 trials (solid black lines) and standard deviation (yel-

low bars). Responses have the same basic characteristics

as Fig. 1 and 2 and are robust to changes in de.

current analysis we also examine variation in dynamics as

a function of stimulation rate (10, 20, 50, or 100 Hz). But

in this work we are interested in short term plasticity, and

therefore we focus on the manner of convergence to what

is assumed to be a stable fixed value. We show that our bio-

physical model agrees well with both the experimental data

and the data driven model derived from the experiment.
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