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Abstract—The question where the computational intel-
ligence associated with humans comes from is an interest-
ing one. General belief states that our supremacy in these
matters is the result of our highly-developed language, that
is able to define and work with things like concepts and
ideas. In the context of formal languages, this question has
been formulated in a precise manner by Noam Chomsky.
Within that context, a suggestive answer to this problem
is that humans possess the most elaborate language struc-
ture, which allows the speaker to use constructs like loops
and the like. We have tested whether this hypothesis stands
the test of the body language of Drosophila’s precopula-
tory courtship behavior and have found it to fail: Seen from
several sides, the data appears to share the language classes
thought to be exclusively reserved to humans.

1. Introduction

A formal grammar G is a quadruple G = (N,Σ, P, S ),
where N is the set of non-terminal symbols, Σ the set of
terminal symbols, P the set of production rules and S is the
start symbol. A rule is applied to a sequence of symbols
by replacing an occurrence of the symbols on the left-hand
side of the rule with those that appear on the right-hand
side. The Chomsky grammar classes -as defined as in Ta-
ble 1- comprise classes of ever-increasing embracing gram-
matical complexity T3 ⊂ T2 ⊂ T1 ⊂ T0, see Fig. 1.
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Figure 1: Relation among the Chomsky classes.

Despite the predominance in our perception of spoken
language, a great part of the information flow even between
humans is not of spoken nature. In this context, the term
’body language’ (smell, appearance, gesture, sound) is of-
ten used for which, obviously, a corresponding classifica-
tion may be applied as well. In this body-language, higher

grammar: language; automaton; rules

T0 (type-0): recursively enumerable
Turing machine
α→ β

α ∈ V∗NV∗, β ∈ V∗, α ! ε

T1 (type-1): context-sensitive
linearly space-bounded, non-determ.Turing machine
αAβ→ αγβ
A ∈ N, α, β, γ ∈ V∗, γ ! ε
S → ε allowed if no rule in P allows α→ βS γ

T2 (type-2): context-free
non-deterministic pushdown automaton
A→ γ, A→ ε, A ∈ N, γ ∈ V∗

T3 (type-3): regular
finite automaton
S → ε
A→ aB (right-regular) or A→ Ba (left-regular)
A→ a, A→ ε, A, B ∈ N, a ∈ Σ

Table 1: Chomsky’s language classes.

grammatical classes would then be more than mere curios-
ity. Whereas any set of symbols could be used for expres-
sion or communication, for efficient communication, this
may be too primitive and inexpressive. To be practically
useful, grammatical rules, suitable to expressing exact re-
lationships among symbols and to improve signal intelligi-
bility by means of redundancy, are essential. The two prop-
erties together allow for the expression from very delicate
data relationships up to the encoding of highly nontrivial
(e.g., genetic) properties, without running into the latent
danger of wrong decoding.

2. Testing for nontrivial grammatical rules

For testing the hypothesis, we investigated data obtained
from D. pre-copulatory courtship. We used a previously
developed framework [1] for measuring and comparing be-
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havior in a fine-grained manner, based on high-speed video
clips of the courtship, allow for the resolution of neuronal
events. From the physics of complex systems, it is known
that the set of closed irreducible orbits provides a complete
and unbiased skeleton for the description of the complexity
arising from chaotic systems [3, 4, 5, 1]. In this approach,
the grammatical rules along which the data are organized
are captured in the composition of the various irreducible
orbits [3, 4]. For the characterization of behavior, a suit-
ably modified approach needs to be used (see [1], where
the validity of the modification is discussed in Ref. [2]).
Accordingly, behavior is captured in terms of the set of irre-
ducible closed orbits of fundamental behavioral elements.
Biologically, this characterization is corroboratied by the
observation that human behavior can be defined as a closed
set of well-defined successions of more fundamental ac-
tions (in the extreme cases called ’rituals’). We have pre-
viously compared [1] the extent by which closed orbits (or
the grammar behind it) would be beneficial for the iden-
tification of the experimental classes of D. behaviors an
animal finds itself in. To investigate this, we first char-
acterized the data by means of closed orbits [1] that take
account of the grammatical structure in the data. In con-
trast, in a second model, we characterized each D. protag-
onist by a behavioral vector the entries of which were the
natural symbols probabilities (i.e., vectors of length 37).
This data model is based on the trivial grammar (no gram-
matical rules). Remarkably, the characteristic stripes and
peaks emerge at the same places most similarly to those
obtained by the orbit analysis. In order to work out the
similarities/dissimilarities among the classes, closed orbits
would therefore not be requested. Both approaches, how-
ever, suggest that the experimental class can be determined
by a protagonist by a reasonable reliability, but they also
suggest that the variability that is nonetheless displayed by
the different protagonists is of a non-random origin. The
significance of even a small advantage by the grammatical
structure, is, however, difficult to assess, as evolutionary,
even small enhancements may, over long times, result in an
appreciable advantage (see genetic algorithms).
To more thoroughly analyze this issue, we compared our
data with surrogate models, based on the given symbol
probabilities. In the surrogate data approach, the original
data is compared with random models of the underlying
symbol probability distribution.The surrogate method will
typically provide the most unspecific model compatible
with the given distribution, i.e., with the most general, i.e.
unrestricted, grammar. Whereas the original closed orbits
analysis may be related to a variable-order Markov model
approximation of the original data, here the underlying
Markov model is of zeroth order. The results obtained for
this experiment demonstrate that the basic (dis)similarities
between the classes are maintained in this approximation as
well. A detailed comparison of the three approaches, con-
firms that the closed orbits enhance the distinguishability
between classes by a very small extent only. The outcome

of these experiments implies that closed orbits would not
be needed for the recognition of the class membership in
the D. courtship experiments.
If the closed orbits have a role in efficient communica-

tion, by being tuned to describe precise functional relation-
ships in the messages and to improve reading reliability by
redundancy, we expect to find a largely increased number
of irreducible closed orbits in the original data, indicative
of a nontrivial grammar. In a third experiment, we therefore
compared howmany closed irreducible orbits are present in
the original data vs. the surrogate case (in terms of num-
bers of distinct orbits, not of frequencies). The results dis-
played in particular in the first two subfigures of Fig. 2,
clearly hallmark the presence of a highly developed gram-
mar underlying the courtship language. The investigations
also yield that a large portion of the orbits found in the
original data are a priori unlikely ones. These observations
taken together justify the statement that additional, nonac-
cidental, structure, which can be interpreted as a grammar,
underlies D. courtship behavior.
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Figure 2: a) Closed orbits in the original (blue) and in 120
surrogate (red) files. b) Maximal/minimal number of orbits
of a given length. c) Number of closed orbits per character
for the different experimental classes.

3. Language class membership of the data

In order to access to what language class D. courtship is
likely to belong to, we first consider that in our data, we
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deal with finite information. As a consequence, the lan-
guage classes T2−T0 is naturally difficult to be discerned.
Note, however, that it is generally believed that natural lan-
guages fall into the class T1 [6]. While thus this question
is not properly decidable (the decision problem of class T1
is PSPACE-complete), it may, nonetheless, be possible to
define some ’generic’ construction (class surrogates) pat-
terns that generate distributions (similar to Fig. 2). We may
assume that the observed data falls in the class that leads
to a minimal distance between the experimental data and
the surrogates from a particular class. This approach leads
to two questions: What would be a generic generation pro-
cess? And what would be a suitable distance measure?
In order to address these questions, we started from a

random walk model of the data that closely resembles the
surrogate data point of view taken above. We first demon-
strate that this situation corresponds to a probabilistic type
T3 grammar, where the term ’probabilistic’ means to say
that each rule has its own probability of application. The
random walk model can then be written as a probabilistic
formal language of type T3 as follows:

Gω = (T,V,R, S ), T = αω,V = {X},

R = {(R1, p1), ..., (Rm, pm), (X → ε, pε)},

i ∈ {1, ...,m}, S = X,

where m is the number of used rules and where, e.g., R1 :
(X → s1X, p1). It is obvious that we deal here with a T3-
grammar.
We may now use generic strings from the T3-grammar

and see to what extent an experimental file can be approxi-
mated by this model. To this end, we define the distance to
the maximumof likelihood of strings, which is the diagonal
in the space spanned by the N symbols of the measurement
string. If this distance is far out of the bulk of distances
generically generated, then we may conclude that the T3
generation machinery is not a very likely one. In Fig. 3 we
provide two examples of experimental data that can easily
modeled / have great difficulty in being modeled by a T3-
type language. It is useful to capture these differences in
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Figure 3: Red lines: distance of experimental, blue lines:
distances of 100 surrogate files. Left: T3, right: suppos-
edly non-T3 grammar.

terms of probabilities rather than distances.

Let n :=
∑
i∈{1,2,,...,nsymb,ε} | ni |, so that x =

{n1, n2, . . . , nsymb} is the coordinate of a random walk of
length n in the symbol space. It is then simple to cal-
culate the probability that a random walk (of length N)
leads from the beginning over x to some endpoint xN . Us-
ing Pthrough(x) := Pin(x) · Pout(x) and their combinatorial
expressions, by plotting log(Pthrough(xi)) versus i we ob-
tain a better measure of the appropriateness of the T3-
model with respect to some data. The probability of a
string ω to be generated by the process is then reflected
in the logarithm of Hthrough(ω) := − 1N log(Pthrough(ω)) :=
− 1N
∑
i log(Pthrough(xi)). Fig. 4 shows the result of this cal-

culation for all files. It is obvious that for some files, the
result is compatible with the assumption of a T3-grammar,
whereas for others, it is not.
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Figure 4: Distance captured in terms of Pthrough. Left: T3,
right: supposedly non-T3 grammar

For those that are not, we observe that there is a peak
point of largest departure from the given grammar. At this
point, we break up the string and model the two parts sep-
arately; and likewise iterated, until we come to an end, see
Fig. 5. We are able to set up a model that verifies that the
grammar type can be inferred from the number k of partial
random walks needed to approximate the data:

k = 1→ T3; k = 2→ T2; k ≥ 3→ T1.

4. Results and conclusions

The results of the approach are displayed in Fig. 6, where
we restrict ourselves to experiments involving genetically
’normal’ male animals. It is seen that the female protag-
onists prefer a T3 language, but seem to have the poten-
tial of accessing also higher grammar types. Male protag-
onists generally use a language of higher complexity, with
a clear tendency towards T1. It emerges that the females
have some potential of changing their language as well,
somewhat less obvious but similar to what normal males
do in the presence of fruitless males. Rather interesting is
the possibility indicated by our analysis that the females
themselves also convey information. This contradicts a
purely decision making role that is exclusively based on
the male’s performance. Such a view is supported by the
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Figure 5: Break-up of a non-T3 grammar file.

obtained results in dependence of the protagonist classes.
The complexity of the language of D. courtship is rather
astonishing, apt to express contents of high complexity as
would be expected to be needed, e.g., for the transmission
of genetic properties. Virgin D. appear to test both: com-
munication and decision making. Mature D. concentrate
on decision making, whereas mated D. carefully test for
’better’ options, before engaging again. For the male, the
situation is a corresponding one: In the presence of virgins,
a less elaborate conversation seems to be used. In the pres-
ence of mature females, more effort is put into courtship,
which is topped only if the female is already mated. Al-
though investigated from a different angle, these results are
consistent with what is suggested by the periodic orbit ap-
proach and with the hypothesis that during pre-copulatory
courtship, detailed information about the protagonists is
conveyed (possibly about the genetic properties of a pro-
tagonist). Within this context, the presented results may of-
fer a new explanation of the courtship phenomenon among
animals.
Within the context of the hypothesis that human intel-

ligence can straight-forwardly be characterized by a lan-
guage class of increased complexity, our results seem to
indicate that such a conclusionwould be premature and that

still more efforts must be invested in order to clarify one of
the most interesting puzzles mankind struggles with: where
its computational intelligence comes from.

female protagonist:  virgin mature mated

male protagonist:  virgin maturemamamamalelelelelele p p p prororororororotagonist:  virgin mature

females:

#
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males:
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Figure 6: Number of files displaying language complexity
classes T1, T2 and T3, for recorded females of state vir-
gin, mature, mated (above), and for recorded males facing
females of state virgin, mature, mated (below), indicating
unexpected highly complex grammars for both genders.
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