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Abstract—Recently methods have been developed
that model low–dimensional chaotic systems in terms
of stochastic differential equations. We test such meth-
ods in an electronic circuit experiment. We achieved
to obtain reliable drift and diffusion coefficients even
without a pronounced time scale separation of the
chaotic dynamics. By comparing analytical solutions
of the corresponding Fokker–Planck equation with ex-
perimental data we show that crisis induced intermit-
tency can be described in terms of a stochastic model
which is dominated by state space dependent diffusion.

1. Introduction

Since the pioneer works on Brownian motion by
A. Einstein[1] and P. Langevin[2] stochastic modelling
has become a well established method. It is a text-
book example that one can model a system with a
distinct time scale separation between some slow and
many fast degrees of freedom by a stochastic differen-
tial equation. Such an equation describes the evolu-
tion of the slow degrees of freedom while the fast ones
are replaced by some heat bath that leads to suitable
stochastic forces.
Here we report on our investigation on stochastic mod-
elling of an experimental system[3]. Our investigation
is motivated by the quite recent finding that stochastic
modelling is not only applicable in systems with many
fast degrees of freedom but also in low–dimensional
chaotic systems[4]. Our experimental system has only
three degrees of freedom and shows crisis–induced in-
termittency. Intermittency is always a phenomenon
with two timescales – a fast oscillation on the pre–
critical attractors and a slow switching between them.
Therefore it is a good candidate for stochastic mod-
elling. Since the found time scale separation is not pro-
nounced, it consequently is not obvious that stochastic
modelling works. Therefore our investigation might be
interpreted as a test of the extreme limits of stochastic
modelling.

The paper is organised as follows: In the follow-
ing section we give details on the experimental system
and the relevant control parameter range where in-
termittency is observed. Section 3 describes the time
series analysis that allowed us to model the dynam-

ics in terms of a Fokker–Planck equation. A detailed
analysis of the Fokker–Planck equation and compari-
son between the theoretical and experimental results
can be found in section 4.

2. Experimental System

The time series analysis is based on data from a
Shinriki oscillator (see fig.1(a))[5]. This circuit belongs
to the Chua family of circuits[6]. The autonomous
circuit consists of a RLC–element coupled through a
non–linearity with an additional RC–element. The es-
sential non–linearity consists of a pair of Zener diodes
Z1,2 (BZX85C3V3). There current–voltage charac-
teristic (cf. inset in fig.1(a)) can be described by:
ID(V1−V2) = ID(∆V ) = sgn(∆V )f(|∆V |−VZ) where
VZ = (1.02 ± 0.04)V and f(x) = (Ax2 + Bx3)Θ(x)
denotes a third order fit with parameter values A =
(13.1 ± 0.7)mA/V2 and B = (−1.59 ± 0.15)mA/V3.
In parallel to the control parameter R there is an op-
erational amplifier circuit (AD711JN) which acts as
a negative resistor with constant resistance −RN and
provides a power supply for the circuit.
To measure the voltage V1 we used a transient recorder
card (Meilhaus ME2600). The digital output channels
of this cards were used for online variation of the con-
trol parameter R, which was realized by several digital
resistors (Xicor X9C102/4P). The fully computer con-
trolled experiment enabled us to measure long time
series of the circuit for many different control param-
eter values.

The dynamics of the circuit is shown in the bifur-
cation diagram in fig.1(b). The data is typical for a
Chua–type circuit: For increasing R a period doubling
route to chaos is found. Several periodic windows oc-
cur for R ≥ 53kΩ before at R = Rc ≈ 66kΩ the
mono–scroll attractor collides with its counterpart and
a double–scroll attractor is observed. For R ≥ Rc the
circuit shows crisis–induced intermittency. Our time
series analysis focuses on this intermittency regime
where the dynamics shows two time scales: A fast
oscillation on the chaotic saddles (the former stable
mono–scroll attractors) and a slow jumping dynamics
between them (cf. fig.2). Details on the crisis–induced
intermittency can be found elsewhere[7]. Here we just
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Figure 1: (a) Schematic of the Shinriki oscillator. Inset: experimental data (symbols) and analytic data fit
of the current–voltage characteristic of the Zener diodes Z1,2. (b) Measured bifurcation diagram for a initial
voltage V1 > 0. The minimum voltage V1 is shown as a function of the control parameter R.
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Figure 2: Sample of V1(t) time series for ∆R ≈ 1.1kΩ
measured with a sampling time of 80µs. About 150
oscillations are shown and 10 jumps between the two
states occur.

want to stress that (a) for a wide range of ∆R the mean
residence time obeys a typical scaling law[8] τ ∼ ∆R−γ

with ∆R = R − Rc and γ ≈ 0.7 (b) for typical values
of ∆R there are about 10–100 oscillations on a chaotic
saddle before a jump occurs (c.f. table2). In typi-
cal textbook examples – e.g. the motion of a particle
in a double well driven by a Gaussian noise with in-
tensity σ2 – one finds (a) a mean residence time that
scales like exp(1/σ2) and (b) a time scale separation
of several orders of magnitude for typical noise inten-
sities. Consequently the dynamics of the circuit does
not resemble the typical features for which stochastic
modelling is obvious.

3. Time series analysis

Assume a non–linear dynamical system ẋ = f(x)
and a scalar measurement z(t) = g[x(t)]. The scalar

∆R = R − Rc mean residence time τ τ/Tosc

100Ω 0.1s ≈ 70
600Ω 30ms ≈ 20
3kΩ 3ms ≈ 2

Table 1: Mean residence time and the ratio between
it and the average oscillation period of the system for
different values of ∆R.

time series might be e.g. a component of the state vec-
tor x or some non–linear function of the components.
A stochastic differential equation that will describe the
dynamics of z(t) will be a Langevin equation:

ż = h (z) + k (z) ξ(t), (1)

where h(z) is a deterministic force and k (z) ξ(t) is
Gaussian white noise with state dependent intensity
k2. One way to quantify the stochastic dynamics is to
analyse the corresponding Fokker–Planck equation:

ρ̇(z, t) =

[

∂

∂z
D1(z) +

∂2

∂z2
D2(z)

]

ρ(z, t). (2)

D1 is the drift and D2 the diffusion coefficient that
govern the evolution equation of the probability den-
sity ρ. There exists a standard recipe to obtain these
coefficients from a stochastic time series by evaluating
first and second moments[9]:

∆t D1(Z) = 〈(z(t + ∆t) − z(t))〉 + o(∆t) (3a)

2∆t D2(Z) = 〈(z(t + ∆t) − z(t))2〉 + o(∆t),(3b)

where the averages are taken for the ensemble with
z(t) = Z. It can be shown that for stochastic time
series in the asymptotic limit ∆t → 0 eqs. (3) yields
reliable values for D1 and D2.
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Figure 3: Dependence of the diffusion coefficient D2

on the time delay ∆t (c.f.eq. (3b)): D2 evaluated at
Z = 1.8V from a time series measured at ∆R ≈ 1.1kΩ.
Raw data (dotted line) and a sliding average over one
period Tosc is shown. For ∆t ∈ [2ms, 8ms] a plateau
appears. For large ∆t values the characteristic power
law decay can be seen.

Obviously the limit ∆t → 0 is not applicable in de-
terministic systems since on this time scale the dynam-
ics is strongly correlated. A suitable ∆t value has to
be large compared to the correlation time of the fast
chaotic motion but apart from this constraint eqs. (3)
have to be evaluated in the asymptotic limit of small
∆t. It is of cause not guaranteed that a stochastic
model in terms of eq. (2) will capture the essential
features of a deterministic time series z(t). Eq. (2)
and the time series analysis based on eqs. (3) rely on
the possibility to describe z(t) by a Markovian process.
Although it is not clear whether our circuit data fulfils
this requirement, we will nevertheless first model the
data and test for such properties later.

Our experimental data is the voltage z(t) = V1(t).
Each of the analysed time series consisted of 6 × 105

data points measured with a sampling time of 80µs.
Evaluation of eq. (3) typically results in a dependence
between the moment and the time delay ∆t that can be
seen in fig. 3: For intermediate values ∆t ∈ [2ms, 8ms]
a plateau is found. Thus, values in this range can be
used to estimate the coefficients of eq. (2).
To estimate spatially resolved D1 and D2 we choose
∆t = 4.5ms. The conditional averages in eqs. (3) have
been computed on a spatial grid with a step size of
∆Z = 50mV. This grid leads to an ensemble size of
approximate 5×103 for each data point. We made sure
that the final results are stable against these particular
choices.
In fig. 4 D1 and D2 evaluated with ∆t = 4.5ms at
∆R = 1.1kΩ are shown. D1 is dominated by a linear
decay with a superimposed oscillatory structure. D2

turns out to be unimodal: Large values around Z = 0V
and small values at the boundaries. These large scale
features are robust against reasonable changes of the
time series analysis parameters ∆t and ∆Z. The fine
structure shows slight changes for varying parameters
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Figure 4: Drift D1 (top) and diffusion D2 (bottom) as
a function of Z = V1 evaluated with ∆t = 4.5ms for
∆R = 1.1kΩ. The straight line indicates a linear least
square fit. Inset: Histogram of V1 with resolution ∆Z
indicating the stationary distribution.

of the analysis. A more pronounced change of them
can be seen for different lengths of the time series. This
indicates that they are partially resulting from finite
ensemble sizes. Some peak structures even seem to be
an artifact generated by the spiky time series. Cf. the
peaks in D2 for z ∈ ±[0.7V, 1.4V] with the stationary
distribution (shown as a inset in fig. 4) where no such
feature occurs. The stable large scale results achieved
lead to our first conclusion that despite the lack of
time scale separation the time series analysis leads to
reproducible drift and diffusion coefficients.

4. Analysis of the stochastic model

The simplest model describing the data given in
fig. 4 is to approximate the drift by a linear expres-
sion D1(z) = −αz and the diffusion by a parabola
D2(z) = D(z2

0 − z2). Such a model is quite simplis-
tic since it does not take the oscillating part into ac-
count but allows us to solve the corresponding Fokker–
Planck equation (2) analytically.
The stationary distribution of eq. (2) is given by
ρ∗ ∼ (z2

0 − z2)α/(2D)−1. For α < 2D the bimodal
distribution reproduces the measured stationary dis-
tribution (cf. inset in fig. 4). The eigenvalues of the
Fokker–Planck operator governing the time evolution
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Figure 5: Mean residence time τ as a function of the
control parameter ∆R. The line shows experimental
data measured with a resolution of 10Ω. The symbols
give the analytical determined values of the stochastic
model.

read Λn = −nα − n(n − 1)D. For α ≪ D there ap-
pears a spectral gap and the mean residence time of
the jumping process between the two states is given
by τ = 2/α.

We evaluated the analytical estimate by computing
the slope of the linear trend α using a least square
fit in the interval [−1.6V, 1.6V]. This investigation is
based on time series from the circuit measured with a
control parameter resolution of 100Ω. A comparison
between these values and direct measured residence
times is given in fig. 5. Taking into account the sim-
plicity of the model the agreement between the exper-
imental and theoretical results is quite accurate over a
wide control parameter range. We conclude that the
stochastic model captures the intermittent features of
the slow time scale.

Although the accuracy of the mean residence time
seems to confirm the validity of the Fokker–Planck
model we checked for higher–order coefficients in the
Kramers–Moyal expansion (3). At least the third– and
fourth–order terms do not vanish. A strict test for
Markovian property of the time series was not pos-
sible with the given ensemble size. But using condi-
tional correlation functions we were able to estimate
that non–Markovian effects are visible at time scales
of about 20ms. Apparently this shortcoming and the
simplistic nature of the model, that neglects the fine
structure of drift and diffusion, are of minor impor-
tance for the modelling of the measured intermittency
as demonstrated by the results of the analysis.

5. Conclusion

Our investigation shows that even when no excessive
time scale separation is present one may successfully
model low–dimensional chaotic systems by stochas-
tic forces. We have demonstrated that reliable drift
and diffusion coefficients can be evaluated using the

Kramers–Moyal expansion with a time delay that has
been adapted to the deterministic nature of the data.

Although our simple stochastic model approximates
only the large scale features of the drift and diffu-
sion, the essential features of the intermittency are
captured. The analytical determined mean residence
times are in good agreement with experimental data
over a wide control parameter range and so are the an-
alytical and experimental stationary distribution. The
model describes crisis induced intermittency as a tun-
nelling which is dominated by state space dependent
diffusion.

The modelling of chaotic motion by suitable stochas-
tic forces could have a wide range of applications even
for low–dimensional systems with no pronounced time
scale separation. Stochastic models may reveal fea-
tures about the underlying non–linear dynamics but
certainly allow a different point of view. Therefore
this modelling is more than just a practical tool that
reduces a non–linear system to a one dimensional
stochastic model.

TS acknowledges the support from ARC, grant no.
DP 0662841, JW and HB acknowledge support from
DFG, grant no. BE 864/4-4.
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