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Abstract—The recurrence of states is a fundamental be-
haviour of dynamical systems. As a modern technique of
nonlinear data analysis, the recurrence plot visualises and
analyses the recurrence structure. Its quantification (re-
currence quantification analysis, RQA) allows us to detect
transitions in the system’s dynamics. In the last decade,
RPs and RQA have become popular in many scientific
fields. However, a sufficient significance test was not yet
developed.

We propose a statistical test for the RQA which is based
on bootstrapping of the characteristic small scale structures
in the recurrence plot. Using this test we can present confi-
dence bounds for the detected transitions and, hence, get a
more reliable result. We demonstrate the new technique on
marine dust records from the Atlantic which were used to
infer climate changes in Africa for the last 4 millennia.

1. Introduction

Recurrence plots (RPs) and recurrence quantification
(RQA) [1] are widely accepted methods for data analysis in
various disciplines, like life science [2, 3, 4, 5], engineer-
ing [6, 7] earth science [8] or finance and economy [9, 10].
Based on RPs, we can study, e.g., complex system’s dy-
namics, transitions or synchronisation [1, 3, 11, 12]. The
investigation of transitions in the system’s dynamics is
based on changes in the system’s recurrence structure. The
different aspects of recurrences can be quantified by mea-
sures of complexity, which are also known as recurrence
quantification analysis (RQA) [1]. Although these mea-
sures are often applied to real data and interpreted as in-
dicators of changes in the system, up to now there are no
means to statistically validate the found transitions. Sev-
eral methods for estimating statistical confidence are avail-
able for the detection of different dynamical behaviour or
finding “deterministic” signals from ensembles of differ-
ent measurements [3, 13, 14]. Statistical tests were also
suggested for the validation of interrelation and synchroni-
sation analysis using bivariate extensions of RPs [15], by
using certain surrogates (AR models, twin surrogates) to
test against the null-hypothesis. However, these are special
cases of a recurrence based analysis, whereas we present a
general purpose method for detecting transitions in univari-
ate measurements. Nevertheless, surrogate tests are useful
statistical tests also for testing for different classes of non-
linear dynamics [16] or for dynamics in data with fluctua-

tions [17].

In this letter we propose a technique which calculates
the confidence level for the most important RQA measures.
Using this method we are able to provide a significance
statement for detected transitions in the systems dynamics
based on RQA. We illustrate this approach on a climate
proxy time series (marine dust deposits), which were used
to infer climate variability in the past.

2. Recurrence based detection of transitions

A recurrence plot tests for the pairwise closeness of all
possible pairs of states (¥, ¥;) (i = 1... N, N as the number
of time points or measurements) in an m-dimensional phase
space,
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with ® as the Heaviside function and ¢ as a threshold for
spatial closeness, which is given by the norm ||-|| (e.g. maxi-
mum or Euclidean norm) [1]. The binary recurrence matrix
R contains the value one for all close pairs ||¥; — Xj|| < &.
From a univariate time series the phase space trajectory can
be reconstructed using time delay embedding [18].

Similar evolving epochs of the phase space trajectory
cause diagonal structures parallel to the main diagonal. The
length of such diagonal line structures depends on the dy-
namics of the system (periodic, chaotic, stochastic). There-
fore, the frequency distribution P(l) of line lengths / can be
used to characterise the system’s dynamics. Several RQA
measures are based on this distribution P(/). Here we focus
only on the measure determinism (DET), which is the ratio
of the recurrence points forming diagonal structures,
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We use a minimal length /,,;, for the definition of a diagonal
line [1].

Slowly changing states, as occuring during laminar
phases (intermittency), cause vertical structures in the RP.
Therefore, the distribution P(v) of line lengths v is used to
quantify the laminar phases occuring in a system. Similar
to the measure DET, we define the ratio of the recurrence
points forming vertical structures,
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and call this measure laminarity (LAM) [1].

In order to study the time-dependent behaviour of a sys-
tem or data series, we compute these RQA measures us-
ing a moving window. The window has size W and is
moved with a step of s over the data in such a way that
succeeding windows overlap with W — s, thus providing
time-dependent measures DET () and LAM(t) with ¢t =
wW/2,3W/2,5W/2,...,N — W/2. The number of windows
Ny covering the data is floor-rounded Ny = (N —W +5)/5s.
This technique was successfully applied to detect chaos-
period transitions [12], chaos-chaos transitions [3] or dif-
ferent kinds of transitions between strange non-chaotic be-
haviour and periodic or chaos [19]. It is applicable on real
world data, as demonstrated for the study of cardiac vari-
ablity [20], brain activity [5], changes in finance markets
[10] or thermodynamic transitions in corrosion processes
[7]1. However, all these applications miss a clear signifi-
cance statement or require repeated measurements to allow
for statistical testing.

3. Confidence intervals of univariate time series

In order to perform a statistical inference for the RQA
measures, we propose a bootstrapping approach [21]. The
bootstrap is a statistical tool that allows for estimating the
precision of any sample statistics (mean, median, P(/) or
P(v)) by randomly resampling (with replacement) from the
observed data.

Since the basis of the RQA measures are the frequency
distributions P(I) or P(v) of the diagonal and vertical re-
currence lines, we will bootstrap these distributions. For
the sake of simplicity, we only consider P(/), but the same
logic applies to P(v).

For each of the moving window ¢ (¢ =
W/2,3W/2,5W/2,...,N — W/2), i.e. for different time
points, we have a local distribution P,(/). However, we
will use all local distributions for bootstrapping in order to
get an overall distribution over the entire region of interest
in the recurrence plot, which is covered by the moving
windows. This means, we bootstrap from the unification
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of the local distributions. We draw n recurrence structures
(i.e. diagonal lines) from P(/). The number n of drawings is
the mean number of recurrence structures contained in the
local distributions P;(l),

| N N
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From the resulting empirical distribution P*(/), we compute
the corresponding RQA measure, in our case DET, Eq. (2).
Repeating this procedure B times (e.g. B = 5,000), pro-
vides a test distribution for DET, say P(DET). P(DET)
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Figure 1: (A) Logistic map with chaos-period and chaos-
chaos transitions for control parameter a = [3.9200 3.9325]
and corresponding RQA measures (B) DET and (C) LAM.
For a = [3.92221 3.92227] we have a period-7 window, for
a = [3.93047 3.93050] a period-8 window and at a broad
range around a = 3.928 intermittency (highlighted with
orange bars). 99% confidence bounds are shown as blue
dash-dotted lines.

provides a robust estimate for the system’s overall be-
haviour as captured by the complexity measures. To this
baseline of the system we can later compare any occuring
transitions.

Calculating the a-quantiles of the distribution P(DET),
we derive the confidence intervals of DET which can be
used to statistically infer whether the changes of DET (7),
and thus the observed transitions, are statistically signifi-
cant. Depending on the kind of transitions, a one- or sided-
test can be appropriate. In the following examples we use
only a one-sided test, because the dynamics changes only
in short epochs to a more deterministic and laminar phase.

4. Tllustrative example

In this section we illustrate the proposed statistical test
on a signal with chaos-period and chaos-chaos transitions.
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Figure 2: Empirical distributions for DET and LAM de-
rived from bootstrapping recurrence structures. These dis-
tributions follow normal distributions (a fitted normal dis-
tribution shown by the black line).

We use a modified logistic map with mutual transitions [12]
Xiyl = a; X (1 - Xi) (6)

with the control parameter a in the range [3.9200 3.9325]
with increments of Aa = 0.000001. Using this intervall
we find for a = [3.92221 3.92227] a period-7 window, for
a = [3.93047 3.93050] a period-8 window and at a broad
range around a = 3.928 intermittency (Fig. 1A).

Next we compute the RQA measures DET and LAM
from this data series (no embedding) using windows of size
W = 200 and with a step size of s = 50. The thresh-
old & is chosen for each window separately in order to pre-
serve a constant recurrence rate of 5%. As a line structure
we consider each line with a length of at least two points,
ie. lmin = Vmin = 2.

The measure DET shows for the periodic windows at
a =[3.922213.92227] and a = [3.93047 3.93050] maxima
(Fig. 1B) [3]. The periodic behaviour of the system causes
only long diagonal lines, resulting in high values of DET .
In contrast, LAM shows several maxima for the region of
intermittency around a = 3.928 (Fig. 1C). In this region,
the system has slowly changing, laminar states [3].

For the proposed bootstrapping approach, we use 5,000
resamplings in order to construct the empirical distribu-
tions P(DET) and P(LAM). We have found that this num-
ber of resamplings is sufficient. The parameters of the re-
sulting empirical distributions are already converged. As
expected, the distributions P(DET) and P(LAM) follow
normal distributions (Fig. 2). As the 99%-quantile we find
for DET qo.99 = 0.75 and for LAM g .99 = 0.05. These val-
ues provide the 99% confidence level for DET and LAM.
Thus, the two maxima of DET in the periodic windows are
significant on a 99% level (p < 0.01; Fig. 1B). Further sig-
nificant maxima of DET give hints to further, smaller pe-
riodic windows. For LAM we find several significant high
values of 99% significance in the region of intermittency
around a = 3.928 (Fig. 1C). This is due to the longer range
of intermittent behaviour in this region of the control pa-
rameter a.

Using these RQA measures we have shown that we are
able to detect the chaos-period and chaos-chaos transitions

with high significance. This is an improvement of the find-
ings discussed in [3, 12].

5. Application on a marine dust record

Longterm variation in eolian dust deposits is highly re-
lated with terrestrial vegetation and may be used as a proxy
for a changing climate (wet, dry). Therefore, marine dust
records can be used to infer epochs of a drier climate in the
past. In particular, a marine record from the Ocean Drilling
Programme (ODP) derived from a drilling in the Atlantic,
ODP site 659, was used to infer changes in the African cli-
mate during the last 4.5 Ma (Fig. 3A) [22]. The author
claimed that the African climate has shifted towards more
arid but variable conditions at 2.8, 1.7 and 1.0 Ma. How-
ever, a new debate about climate transitions at these times
recently arose because of their importance for the hominin
evolution in Africa [23]. This debate challenges for a re-
liable test and enhanced analysis tools for the detection of
such transitions. Therefore, we apply the RQA and the pro-
posed significance test on the dust flux record of the ODP
site 659 [22].

We used a time delay embedding with dimension m = 3
and delay T = 2. The threshold is chosen to preserve a
constant recurrence rate of 5%. The bootstrapping is per-
formed using 5,000 resamplings. We are interested in the
95% confidence interval.

The RQA measures DET and LAM reveal significant
high values between 4.2 and 4.0 Ma, 3.6 and 3.4 Ma, 2.6
and 2.4 Ma. Around 1.1 Ma only DET is significantly in-
creased and around 2.9 Ma only LAM is significantly in-
creased. Since 0.6 Ma, both measures increase again sig-
nificantly (Fig. 3B, C).

Based on the significant increase of the DET measure
we can infer that especially during the epochs 4.2 to 4.0 Ma
and 3.6 to 3.4 Ma the climate was behaving more regular.
The increase of LAM at 4.2, 3.6, 2.6 and 0.6 Ma indicates
transitions at these times in the African climate regime,
as exhibited by an intermittency behaviour. These time
epochs differ obviously from the climate changes proposed
by deMenocal [22]. However, deMenocal was just testing
for changes in the frequencies and not in the dynamics. The
linear methods he used (evolutionary power spectra) are not
able to detect dynamical transitions.

These epochs found using RQA coincide with the oc-
curences of lakes in East Africa and with important ho-
minin evolution steps [23].

6. Conclusions

By bootstrapping the smale-scale structures of recur-
rence plots, we were able to provide confidence levels for
the recurrence quantification analysis. We have shown that
the RQA reveals chaos-period and chaos-chaos transitions
in the logistic map with statistical significance. Moreover,
applying this approach on a palaeo-climate proxy record,
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Figure 3: (A) Dust flux record of ODP site 659, and cor-
responding (B) DET and (C) LAM measures (95% confi-
dence bounds are shown with blue dash-dotted lines).

we found transitions in the climate regime, which may have
caused significant influences on the African climate and,
thus, on the hominin evolution.
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