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Abstract—In this paper, we investigate chaotic associa-
tive memory dynamics in a chaotic neural network model
(referred as CNN hereafter) with a time-dependent system
parameter. We have shown that an isolated chaotic neu-
ron model with a time-dependent system parameter gives
attractor coexistence behaviors depending on initial con-
ditions. In this paper, we introduce a time dependent sys-
tem parameter into Adachi & Aihara CNN with association
recalling dynamics. Consequently, the system possesses
two types of initial dependence, originating in (i) synap-
tic connections and (ii) a time-dependent system param-
eter. The purposes of this paper are (i) to show whether
two types of initial dependence could coexist or not, and
(ii) to investigate chaotic associative memory dynamics for
various initial configurations. From computer experiments,
two types of initial dependence can coexist and the system
shows complex associative memory dynamics. In several
parameter regions, the system reveals different chaotic as-
sociative memory dynamics depending on different initial
configurations of memory patterns, that is, the difference
originates in synaptic connections. On the other hands, for
the other initial configurations which are slightly different
from memory patterns, the system shows different periodic
orbits. The difference between chaotic and periodic origi-
nates in a time-dependent system parameter.

1. Introduction

Based on the fact that chaotic phenomena have observed
in biological systems, chaos would play important roles in
information processing of biological systems [1]-[9]. Nara,
Davis and their colleagues have presented fruitful results of
chaotic wandering behaviors of in a neural network model
[2, 3]. Related with complex memory search, they have
investigated sensitive responses to memory pattern frag-
ments in chaotic wandering behaviors. Kuroiwa and his
colleagues have investigated possibilities in realizing a hi-
erarchical memory search with chaotic wandering behav-
iors in CNNs [5]-[9]. They have investigated similarities
and differences of sensitive responses to memory pattern
fragments among three types of CNNs [5]-[8]. In addition,
they have investigated how to construct hierarchical mem-
ory patterns for the hierarchical memory search [9].

Based on our investigations, however, sensitive and

searchless access to target pattern could be realized. On
the other hand, fuzzy processing like the person is impossi-
ble. A key point to realize the hierarchical memory search
with fuzzy processing would employ a multistable chaotic
system. One of examples of the multistable chaotic system
is Logistic mapping with a time dependent system parame-
ter, which reveals that different attractors can coexist. [10].
In this paper, therefore, we introduce a time dependent sys-
tem parameter into Adachi & Aihara CNN [4], which could
possess two types of initial dependence, originating in (i)
synaptic connections and (ii) a time-dependent system pa-
rameter. Thus, the system could reveals different responses
to almost same inputs, meaning of different initial depen-
dence.

In Adachi & Aihara CNN with a time dependent sys-
tem parameter, therefore, the purposes of this paper is (i) to
show whether two types of initial dependence could coex-
ist or not, and (ii) to investigate chaotic associative memory
dynamics for various initial configurations.

2. Model Equations

2.1. Adachi & Aihara CNN

Let us present Adachi & Aihara CNN, briefly [4]. An
internal state of each element in Adachi & Aihara CNN
consists of two types of internal states, an associative term
and a refractoriness term. Thus, the internal state of the ith
element at time t, ui(t), is written by,

ui(t) = ηi(t) + ζi(t), (1)

where ηi(t) represents the associative term and ζi(t) denotes
the refractoriness term.

The associative term of the ith element at time t is given
by,

ηi(t + 1) = kηηi(t) +
N∑

j=1

wi j f (u j(t); βη) (2)

where kη and βη represent a decay parameter and a control
parameter of the steepness of the output function f (· · ·) for
the associative term, respectively, wi j denotes a synaptic
connection from jth element to ith one, and N describes
the total number of elements. The f (u j(t); βη) corresponds
to an output for the associative term.
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The refractoriness term of the ith element at time t is
written by,

ζi(t + 1) = kζζi(t) − α f (ui(t); βζ) + Ai, (3)

where kζ and βζ represent a decay parameter and a control
parameter of the steepness of f (· · ·) for the refractoriness
term, respectively, α denotes a refractory scaling parame-
ter, and Ai corresponds to a constant bias input.

The output function in this paper applies a sigmoidal one
with steepness parameter β defined by,

f (x; β) =
1

1 + exp(−βx)
. (4)

In this paper, different values of the steepness parameter of
βη and βζ are employed to represent different output func-
tions for the associative term and the refractoriness term,
respectively. It should be noted that the output of the sys-
tem corresponds to the output of the the associative term of
{ f (ui(t); βη)}.

2.2. Orthogonal learning method

In this paper, synaptic connections of {wi j} are calculated
according to an orthogonal learning method,

wi j =

P∑
a=1

L∑
µ=1

v(a)(µ+1)
i (v(a)(µ)

j )† (5)

where v(a)(µ) denotes µth memory pattern vector among ath
cycle, (v(a)(µ))† is a conjugate vector of v(a)(µ) and P repre-
sents the total number of cycle.

The conjugate vector is defined as follows:

(v(a)(µ))† =
P∑

b=1

L∑
ν=1

(O−1)(a)(µ)(b)(ν)v(b)(ν), (6)

where O−1 is an inverse matrix of the overlap matrix calcu-
lated by,

O(a)(µ)(b)(ν) =

N∑
k=1

v(a)(µ)
k v(b)(ν)

k . (7)

Note that applying the equation (5), P limit cycle mem-
ory patterns with a period of L are embedded in the system.

3. Adachi & Aihara CNN with time dependent system
parameter

Let us present Adachi & Aihara CNN with time depen-
dent system parameter. The internal state of ith element is
given by,

ui(t) = εηi(t) + ζi(t), (8)

where ε controls a contribution weight of the associative
term and the refractoriness term.

System parameters introducing chaotic associative mem-
ory dynamics are appropriate for the time dependent sys-
tem parameter. Therefore, a candidate are α, βζ or Ai. In

this paper, we employ βζ as a candidate of the the time de-
pendent system parameter. Thus, the refractoriness term is
rewritten by,

ζi(t + 1) = kζζi(t) − α f (ui(t); βζ(t)) + Ai, (9)

where βζ(t) is given by,

βζ(t) =
{
β1 (t = even)
β2 (t = odd). (10)

By switching β1 and β2 at time t, the refractoriness term in-
volves initial dependence originating in the time dependent
system parameter. On the other hand, the associative term
includes initial dependence originating in synaptic connec-
tions. Therefore, we expect that two types of initial depen-
dence could coexist by controlling the contribution weight
of ε

4. Computer Experiments

4.1. Purposes and Method

In this paper, we investigate whether two types of initial
dependence could coexist or not, and chaotic associative
memory dynamics for various initial configurations. There-
fore, we investigate output sequences for various β1 and β2
by direct observation. In addition, we employ visiting mea-
sure to characterize chaotic associative memory dynamics.

The visiting measure is evaluated by counting which
basins of memory patterns an orbit of the chaotic associa-
tive memory dynamics in Adachi & Aihara CNN passes at
each time step. In order to determine which basins the or-
bit passes, we set outputs of Adachi & Aihara CNN at each
time step among its updating as an initial configuration of a
recurrent neural network model (referred as RNN), and we
check which memory patterns RNN converges into within
100 steps. We evaluate the visiting measure with use of T
different points of the orbit of the chaotic associative mem-
ory dynamics from T0 + 1 to T0 + T steps.
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Figure 1: Multi-cycle memory patterns [2].
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Figure 2: Visiting measure.
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Through all the simulations, we set parameters as fol-
lows, α = 3.3，Ai = 0.3, kη = 0.3，kζ = 0.8，ε = 0.5, and
βη = 100.0. In the calculation of the visiting measure, we
choose T0 = 20, 000 and T = 10, 000.

4.2. Results

We observed output sequences and visiting measures
with the change of β1 and β2 variously. We have succeeded
to confirm coexistence of two different initial dependence
in output sequences of Adachi & Aihara CNN for various
pairs of β1 and β2, where chaotic associative memory dy-
namics and periodic one, periodic one and the other peri-
odic one, or chaotic one and the other chaotic one coexist.

In this paper, we present typical example with β1 = 10.0
and β2 = 38.7. In Fig. 4.1, the visiting measure is given. A
relation of the figure indexes from (a) to (e) represents ini-
tial dependence originating in synaptic connections, where
different face patterns belonging in different cycles are em-
ployed as initial configurations. On the other hand, a re-
lation of the figure indexes of (1) and (2) represents initial
dependence originating in time dependent system parame-
ter, where quite similar initial configurations belonging in
the same face pattern are applied, that is, the difference is
decimal value of the pattern. A distribution of the visiting
measure is completely dissimilar among initial conditions,
suggesting all the orbits are entirely different. Thus, two
types of initial dependence can coexist. In Fig. 4.2, output
sequences are given. Even though quite similar initial con-
figurations belonging in the same face pattern are applied,
output sequences are different.

5. Conclusions

In this paper, we investigate chaotic associative mem-
ory dynamics in Adachi & Aihara CNN with the time-
dependent system parameter. The system can possess two
types of initial dependence, originating in (i) synaptic con-
nections and (ii) a time-dependent system parameter. Start-
ing from different initial face patterns, the system reveals
different dynamics, suggesting the initial dependence orig-
inating in synaptic connections. On the other hand, start-
ing from quite similar initial configurations belonging in

time step

’(a) (b)

Figure 3: Typical examples of output sequences.

the same face pattern, the system also shows different dy-
namics, suggesting the initial dependence originating in the
time dependent system parameter. The difference of dy-
namics where two types of initial dependence coexist or
not is a future problem.
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