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Abstract—This contribution discusses aspects of a
learning theory for probabilistic classifiers. Classical sta-
tistical learning theory focusses mainly on classifiers which
give unequivocal response to an input. This is, the output
of the classifier is always one of the class labels (after ap-
propriate conversion). Such classifiers are often inadequate
though, for example if the classifier is to be used by a com-
munity of users with heterogeneous cost–loss profiles. Re-
cently there has been increasing interest in classifiers which
provide a probabilistic rather than a deterministic answer,
since probability assignments allow for more informed de-
cision making in the face of uncertain risks. The present
contribution discusses how to evaluate or “score” proba-
bility assignments, leading to the concept of scoring rules.
As will be demonstrated, scoring rules need to have cer-
tain properties in order to guarantee this evaluation to be
logically consistent. Furthermore, scoring rules allow to
formulate the training of a probabilistic classifier as empir-
ical risk minimisation, rendering large parts of the theory
of statistical learning applicable to the present problem.

1. Probabilistic Forecasts

Assume the objective is to forecast whether a real–world
event will occur or not, for example whether on a given
day the temperature at Dresden airport at 12 o’clock will
fall below 0◦C. We define the variable Y, referred to as the
target1, to be 1 if that event actually happens and 0 if it
does not. As forecasters, we may or may not have some
information available which we can employ to build our
forecasts. As a probabilistic forecast for Y we denote any
function ρ which maps our information or input data onto
a number between zero and one, requiring no further prop-
erties so far. To stay with the example above, we might
have access to temperature forecasts for Dresden, produced
by a numerical weather prediction system. We could take
that temperature forecast as the aforementioned input data,
while a possible choice for the function ρ could be some
sigmoidal function which maps possible temperature val-
ues onto the interval [0, 1]. So far, this is of course but a
classifier with output signal confined between zero and one,
and nothing else justifies this simple scheme being called a
probabilistic forecast. But what we of course have in mind

1Elsewhere referred to as the verification or observation

is this: Suppose there is some underlying probabilistic re-
lationship between the inputs and the targets, and the aim
is to find a ρmimicking that relationship. Suppose we have
available a representative set of feature–target pairs, can we
learn the underlying relationship from these training data?
The task is similar to for example the regression problem,
where the aim is to mimic a deterministic relationship. The
theory of statistical learning is a framework which provides
both theoretical understanding and algorithms to learn from
data. The basic approach of statistical learning is to start
with a sufficiently flexible class of candidate functions and
then pick the candidate which exhibits the least error in
explaining the training data (according to some appropri-
ate measure of error). Statistical learning for probabilistic
relationships is a less well developed theory, and the fol-
lowing sections aim at changing this to the better. In Sec-
tion 2, the problem at hand will be stated precisely. Fur-
thermore, it is argued informally that the objective of prob-
abilistic forecasting should be to reconstruct (an approxi-
mation to) the probability of the event (or possible values
of the target) given the inputs. Section 3 revisits scoring
schemes, which will provide the appropriate measures of
error of a probabilistic forecast. In Section 4 three comple-
mentary model classes will be discussed, which allow for
constructing probabilistic forecasts. Section 5 concludes.
In brief, using appropriate model classes and performance
measures, most of the concepts from classical statistical
learning carry over to the situation discussed in this paper.

2. Problem Statement and Notation

The primary aim of this section is to settle some nota-
tional conventions. The general setup we have in mind is
as follows. As in the introduction, let the target Y be a
random variable taking the values 0 and 1 only, with Y = 1
indicating that the event under concern happened and Y = 0
otherwise. The features or inputs X are random variables
too, taking values in Rd . The underlying probability mea-
sure will be denoted by P. The probabilistic relationship
between X and Y is described through the following ob-
jects. Let

f0(x) := P(X ∈ x + dx|Y = 0),

f1(x) := P(X ∈ x + dx|Y = 1),
(1)
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that is, f0 and f1, respectively, are the densities of X given
Y = 0 and Y = 1, respectively. By

π(x) := P(Y = 1|X = x) (2)

we denote the conditional probability of the event “Y = 1”
given X, and

π̄ := P(Y = 1) (3)

denotes the base rate or grand probability of the event “Y =
1”. Finally,

f (x) := P(X ∈ x + dx) (4)

denotes the unconditional density of the features X. The
Bayes rule entails various relations between these objects,
for example f (x) = f1(x)π̄ + f0(x)(1 − π̄).

Intuitively, one would hope that ρ(x) gives the probabil-
ity of Y = 1 given X = x, or

ρ(x) = P(Y = 1|X = x) = π(x). (5)

We will see in Sect. 3 that many reasonable measures of
forecast success support this intuition, that is, they give
maximum possible scores if ρ(X) indeed agrees with the
probability of Y = 1 given X.

A seemingly different way to motivate π(x) as a good
forecast probability is through reliability. Reliability means
that on condition that the forecast (approximately) equals z,
the event should occur with a relative frequency (approxi-
mately) equal to z, too. As an optimality criterion, reli-
ability is not sufficient to single out a particular forecast-
ing scheme, since any conditional probability of the form
P(Y = 1|I) is reliable, independent of what I is. In partic-
ular, the base rate π̄ is reliable as well. Hence, in addition
to reliability, the forecast should feature a high correlation
with the actual event. This property is known as sharp-
ness. It can be demonstrated that π(x) is indeed the fore-
cast which features maximum sharpness among all reliable
forecasts which can be written as functions of X. As we
will briefly discuss in Sect. 3, it is in fact for the same rea-
son that ρ(X) = P(Y = 1|X) achieves optimal scores.

3. Scoring Schemes

In this section, the question of how to quantify the per-
formance of forecasts is addressed. Performance measures
are important not only in order to rank existing forecast
schemes but also in the design of such schemes, for ex-
ample the tuning of free parameters. Measuring the suc-
cess of predictions in terms of how “close” they eventually
come to the truth is a paradigm which presumably requires
no further motivation. The (root) mean squared error is
one among many possible variants of this paradigm. If we
envisage to formulate our forecasts in terms of probabili-
ties though, the paradigm cannot be applied readily without
modification, as the notion of “distance” between forecast

and targets ceases to be meaningful if the forecast is a prob-
ability assignment but the target is a class label. But prob-
ability forecasts essentially quantify how likely a given po-
tential event will come true, thus already providing a sort of
self rating. Hence it seems reasonable to value the success
of a probability forecast in terms of how confident the fore-
cast was of the event which eventually occurred, in relation
to other events which did not. This idea is implemented in
the concept of scores, explained in Subsection 3.1.

Another popular approach to measuring the quality of
probabilistic forecast is the Receiver Operating Character-
istic (ROC), briefly discussed in Subsection 3.2. Different
from scores, the ROC, albeit taking the probabilistic char-
acter of the forecast into account, is insensitive to the relia-
bility of the forecast.

3.1. Brier Score and Ignorance

A scoring rule [6, 9, 4, 11] is a function S (p, z) where
p ∈ [0, 1] and z is either zero or one. If ρ(X) is a forecast
and Y is the corresponding target, then S (ρ(X), Y) quanti-
fies how well ρ(X) succeeded in forecasting Y. A scoring
rule effectively defines two functions S (p, 1), quantifying
the score in case the forecast is p and the event happens,
and S (p, 0), quantifying the score in case the forecast is
again p but the event does not happen. Two important ex-
amples are the Ignorance score [6], given by the scoring
rule

S (p, y) := − log(p) · y − log(1 − p) · (1 − y), (6)

and the Brier score [1], given by the scoring rule

S (p, y) := (y − p)2 = (1 − p)2 · y + p2 · (1 − y). (7)

These definitions imply the convention that a smaller score
indicates a better forecast.2

A score is a “point–wise” (evaluated at every single time
instance) measure of performance. It quantifies the suc-
cess of individual forecast instances by comparing the ran-
dom variables ρ(X) and Y point-wise. The general qual-
ity of a forecasting system (as given here by the random
variable ρ(X)) is commonly measured by the average score
E
[

S (ρ(X), Y)
]

, which can be estimated by the empirical
mean

E
[

S (ρ(X), Y)
]

�

1
N

N
∑

i=1

S (ρ(xi), yi) (8)

over a sufficiently large data set (xi, yi).
The rationale behind the two mentioned scoring rules,

the Ignorance and the Brier score, is rather obvious. If
the event occurs, the score should become better (i. e. de-
crease) with increasing ρ, while if it does not occur, the
score should become worse (i.e. increase) with increasing
ρ. But why then not taking just 1 − ρ if the event occurs,

2This convention might run contrary to how the word “score” is used
in ordinary parlance. Its virtue though lies in the fact that the divergence
function (to be defined later) becomes positive definite.
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and ρ if it does not? To see the problem with this “linear”
scoring rule, define the scoring function

s(q, p) := S (q, 1) · p + S (q, 0) · (1 − p) (9)

where q, p are two arbitrary probabilities, that is, numbers
in the unit interval. Note that the scoring function is the
score averaged over cases where the forecast is q but in fact
p is the true probability of the event “Y = 1”. In view of the
interpretation of the scoring function, it seems reasonable
to require that the average score of the forecast q should be
best (i.e. minimal) if and only if q in fact coincides with the
true probability of the event “Y = 1”. This means that the
divergence function (or loss function)

d(q, p) := s(q, p) − s(p, p) (10)

has to be positive definite, that is, never negative and zero
only if p = q. A scoring rule with the corresponding
divergence function having this property is called strictly
proper [4, 3]. The divergence function of the Brier score for
example is d(q, p) := (q− p)2, demonstrating that this score
is strictly proper. While the Ignorance is proper as well, the
linear score though is easily shown to be improper.

The mathematical expectation of a strictly proper scores
allows for a very interesting decomposition (see [2] for a
proof). For any strictly proper scoring rule, define the en-
tropy e(p) := s(p, p). Furthermore let πρ(r) := P(Y =
1|ρ(X) = r) be the conditional probability of Y = 1 given
that ρ(X) = r. This probability is a function of ρ but is fully
calibrated. Then

ES (ρ, Y) = e(π̄) − Ed(π̄, π) + Ed(ρ, πρ). (11)

These terms can be interpreted as follows: The entropy e(π̄)
is the ability of the base rate π̄ to forecast draws from itself,
and hence quantifies the fundamental uncertainty inherent
in Y. The term Ed(π̄, π) is positive definite and quantifies
the average divergence of π from its mean. It can hence be
considered a generalised variance of π. If the Brier score
is used, this term is in fact the ordinary variance of π. The
term Ed(ρ, πρ) is again positive definite and quantifies the
imperfect calibration of ρ. As noted earlier, a larger vari-
ance of π yields better forecast skill.

3.2. The Receiver Operating Characteristic

The ROC [5] is a concept originating in signal detec-
tion, but it is applicable to any binary classification prob-
lem. The ROC curve for a certain classifier ρ comprises a
plot of the hit rate

H(δ) := P(ρ ≥ δ|Y = 1) (12)

versus the false–alarm rate

F(δ) := P(ρ ≥ δ|Y = 0), (13)

with δ acting as a parameter along the curve.It fol-
lows readily from the definitions that both H and F are

monotonously decreasing functions of δ with limits 0 for
increasing δ and 1 for decreasing δ, whence the ROC curve
is a monotonously increasing arc connecting the points
(0, 0) and (1, 1). Monotonous transformations of the clas-
sifier do not change the ROC, as is easily derived from its
definition.

Arguably, a classifier ρ1 should be taken as better than
another classifier ρ2, if for any fixed false–alarm rate F, the
hit rate H1 of ρ1 is equal or larger than the hit rate H2 of ρ2.
If this is the case, we will refer to ρ1 as being never inferior
to ρ2. It can be demonstrated that the classifier π(X) is never
inferior to any classifier of the form ρ(X) (this follows from
the Neyman–Pearson–Lemma [10] and the fact that π(X) is
a monotonically increasing function of the likelihood ratio
(see Eq. 14).

If we have to compare two arbitrary classifiers ρ1 and
ρ2, then the notion of “never inferior” is not so useful, as
the two ROC curves might cross. This is a problem if a
criterion is required in order to rank classifiers, as there is
no reason why the ROC curves corresponding to any two
classifiers should not cross. Hence, summary statistics of
ROC curves are needed, for example the area under the
ROC curve or AUC (which is positively oriented). It can
be shown that the AUC gives the probability that on an in-
stance when the event takes place, the classifier is actually
larger than on an independent instance when the event does
not take place. A never inferior classifier is obviously never
inferior with respect to AUC.

4. Three Model Classes

In this section, three model classes will be presented.
The first two, Kernel Estimators and Nearest Neighbor
Models, are variants of their cousins well known in sta-
tistical learning. The third, logistic regression, has been
thoroughly investigated in statistics [7].

4.1. Kernel Estimator

At the basis of this model class is the identity

π(x) =
π̄ f1(x)

f (x)
=

1

1 + (1−π̄) f0(x)
π̄ f1(x)

, (14)

which suggests to first estimate the probability densities
f0(x) and f1(x) and then replace the respective quantities in
Equation (14) by their estimates. So–called kernel estima-
tors [12] provide a simple yet powerful method to estimate
probability densities from data. Versatile implementations
of this technique are available [8]. Since kernel estimators
do essentially all computations upon evaluation, it is worth-
while to use efficient code in these steps. On the other hand,
kernel estimators allow for simple leave–one–out crossval-
idation, a feature which is very conventient for model vali-
dation.
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4.2. Nearest Neighbor Approach

Nearest neighbor (NN) models [7] are among the most
popular model types in statistical learing. Common to all
NN models is that for a given query point x, the training
set is searched for a few nearest neighbors xi, i = 1 . . .n of
x. The number of requested neighbors n might be fixed,
or alternatively all neighbors within a certain radius δ of
the query point are considered, in which case n depends
on x. Then a (usually rather simple) local model is fitted
to the selected feature–target pairs (xi, yi), i = 1 . . .n and
finally evaluated at the query point x. Most common are
local averages, that is, we estimate

ρ(x) =
∑

yiwi
∑

wi
, (15)

where the sum runs over all i so that xi is among the cho-
sen neighbors of x, and the wi are weights which depend
on the distance between x and xi. Giving fewer weight to
points which are further away from the query point renders
the estimate more smooth. Otherwise, if the query point is
varied, the estimator jumps a little every time a new point
enters the neighborhood.

4.3. Logistic Regression

Logistic regression [7] assumes a model of the form

ρ(x) = λ
(

β0 + xβt
)

(16)

where β0 resp. β are parameters to be determined. The link
function λ can be any monotonous function mapping R to
the unit interval, but a popular choice is

λ(z) =
exp(z)

1 + exp(z)
. (17)

In other words, logistic regression assumes that the loga-
rithmic odds ratio log( ρ1−ρ ) is a linear function of the in-
puts. The parameter vector is often determined using the
log–likelihood (which is equivalent to using the Ignorance)
as emirical risk, but other scores work just as well. Lo-
gistic models inherit various useful properties from linear
models, as long as strictly proper scores are used in the em-
pirical risk minimisation. The reason is that locally around
the optimum, risk minimisation is equivalent to weighted
linear regression. For example, logistic regression allows
for an easy calculation of the leave–one–out parameters.
These are only approximately true, but the error should be
small as long as there are sufficiently many data points so
that leaving out one of them amounts to a small perturba-
tion of the risk functional only. To minimize the empirical
risk, a Newton–Raphson algorithm can be used. Good ini-
tial guesses for the parameter β are obtained by fitting a
conventional linear model z = β0 + xβt to the modified tar-
gets ỹi = 2yi − 1. As any learning problem, logistic models
need regularization if there are many and highly correlated
inputs, in order to avoid large model variance. We found

that a robust way to achieve this is to determine the param-
eters βt by standard ridge–regression [7] on the modified
targets ỹi. The ridge penalty can be optimized using, for ex-
ample, leave–one–out cross–validation. The so determined
parameters are used in a logistic model of the form

ρ(x) = λ(β0 + βs·(xβt))

with only two remaining parameters β0, βs to be deter-
mined. Finally, note that the link function (and the param-
eters β0, βs) have no influence on the ROC. Hence, in terms
of ROC, a logistic model is equivalent to its “linear core”.

5. Conclusion

This brief contribution discusses aspects of a statisti-
cal learning approach to probabilistic forecasting. Both
scoring techniques as well as model classes are presented,
which render the risk minimisation principle, which is fun-
damental to statistical learning, applicable in the present
situation.
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