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Abstract—The association ability of associative memo-
ries composed of chaotic neuron models or chaotic neuron-
based models such as chaotic complex-valued neuron
model and chaotic quaternionic neuron model are very sen-
sitive to chaotic neuron parameters such as scaling factor of
refractoriness α, damping factors (km and kr) and so on. In
this paper, we investigate the relation between the damp-
ing factors (km and kr) and one-to-many association ability
of the Chaotic Quaternionic Multidirectional Associative
Memory (CQMAM). The CQMAM is based on the Mul-
tidirectional Associative Memory and composed of quater-
nionic neurons and chaotic quaternionic neurons, and it can
realize one-to-many associations of M-tuple multi-valued
patterns.

1. Introduction

Although a lot of associative memories have been pro-
posed, most of these models can deal with only one-to-
one associations[1][2]. In contrast, as a model which
can realize one-to-many associations, some models which
are based on the chaotic neuron models[3] or chaotic
neuron-based models such as chaotic complex-valued neu-
ron model[4] and chaotic quaternionic neuron model[5]
have been proposed[6]–[13]. However, the association
ability of neural networks composed of chaotic neuron
models or chaotic neuron-based models are very sensitive
to parameters such as scaling factor of refractoriness α,
damping factors (km and kr) and so on.

In this paper, we investigate the relation between the
damping factors (km and kr) and one-to-many association
ability of the Chaotic Quaternionic Multidirectional Asso-
ciative Memory (CQMAM)[13]. The CQMAM is based
on the Multidirectional Associative Memory and com-
posed of quaternionic neurons[14] and chaotic quaternionic
neurons[5], and it can realize one-to-many associations of
M-tuple multi-valued patterns.

2. Chaotic Quaternionic Multidirectional Associative
Memory

Here, we explain the Chaotic Quaternionic Multidirec-
tional Associative Memory (CQMAM)[13] which are in-
vestigated in this research.
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Figure 1: Structure of CQMAM.

2.1. Structure

The CQMAM has more than two layers as similar as
the conventional Multidirectional Associative Memory[2].
Figure 1 shows the structure of the 3-layered CQMAM.
In this model, each layer composed of two parts; (1) Key
Input Part composed of quaternionic neurons[14] and (2)
Context Part composed of chaotic quaternionic neurons[5].

2.2. Learning Process

In the CQMAM, the connection weights are trained by
the orthogonal learning. However, the orthogonal learning
can not deal with the training pattern set including one-to-
many relations because the stored common data cause su-
perimposed patterns. In the CQMAM, the patterns with its
own contextual information are memorized by the orthog-
onal learning as similar as the conventional CCMAM[9].

The connection weights from the layer y to the layer x,
wxy and the connection weights from the layer x to the layer
y , wyx are determined as follows:

wxy = Xy(X∗xXx)−1X∗x (1)
wyx = Xx(X∗y Xy)−1X∗y (2)

where * shows the conjugate transpose, and −1 shows the
inverse. Xx and Xy are the training pattern matrix which
are memorized in the layer x and the layer y, and are given
by

Xx = {X(1)
x , · · · , X

(p)
x , · · · , X(P)

x } (3)
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Xy = {X(1)
y , · · · , X

(p)
y , · · · , X(P)

y } (4)

where X(p)
x is the pattern p which is stored in the layer x,

X(p)
y is the pattern p which is stored in the layer y and P is

the number of the training pattern sets.

2.3. Recall Process

Since contextual information is usually unknown for
users, in the recall process, only the Key Input Part receives
input in the first step. For example, in the training sets
which is given by

{(X1 CX1,Y1 CY1, Z1 CZ1),
(X1 CX2,Y2 CY2, Z2 CZ2),
(X2 CX3,Y3 CY3, Z3 CZ3)}, (5)

and X1 is used as an input to the CQMAM. Here, Cxx (such
as CX1 and CY1) shows the contextual information. In the
CQMAM, when X1 is given to the network as an initial
input, since the chaotic quaternionic neurons in the Context
Part change their states by chaos, one-to-many associations
can be realized as follows:

(X1 0, ?, ?)→ · · · → (X1 CX1,Y1, Z1)→ · · ·
→ (X1 CX2,Y2, Z2)→ · · · (6)

The recall process of the CQMAM has the following pro-
cedures when the input pattern is given to the layer x.
Step 1 : Input to Layer x

The input pattern is given to the layer x.
Step 2 : Propagation from Layer x to Other Layers

When the pattern is given to the layer x, the information
is propagated to the Key Input Part in the other layers. The
output of the neuron k in the Key Input Part of the layer y
(y , x), xy

k(t) is given by

xy
k(t) = f

 N x∑
j=1

wyx
k j x

x
j(t)

 (7)

where N x is the number of neurons in the layer x, wyx
k j is the

connection weight from the neuron j in the layer x to the
neuron k in the layer y, and xx

j(t) is the output of the neuron
j in the layer x at the time t. f (·) is the output function
which is given by
f (u) = f (e)(u(e)) + f (i)(u(i))i + f ( j)(u( j)) j + f (k)(u(k))k (8)

f (e)(u) = f (i)(u) = f ( j)(u) = f (k)(u) = tanh
( u
ε

)
(9)

where ε is the steepness parameter, and i, j and k are imag-
inary units.
Step 3 : Propagation from Other Layers to Layer x

The output of the neuron j in the Key Input Part of the
layer x, xx

j(t + 1), is given by

xx
j(t + 1) = f

 M∑
y,x

 ny∑
k=1

wxy
jk xy

k(t)

 + vA j

 (10)

where M is the number of layers, ny is the number of neu-
rons in the Key Input Part of the layer y, wxy

jk is the connec-
tion weight from the neuron k in the layer y to the neuron j
in the layer x, v is the connection weight from the external
input, and A j is the external input (See 2.4) to the neuron j

in the layer x.
The output of the neuron j of the Context Part in the

layer x, xx
j(t + 1) is given by

xx
j(t + 1) = f

 M∑
y,x

 ny∑
k=1

wxy
jk

t∑
d=0

kd
mxd

k (t − d)


−α(t)

t∑
d=0

kd
r xx

j(t − d)

 (11)

where km and kr are damping factors. And, α(t) is the scal-
ing factor of the refractoriness at the time t, and is given
by

α(t) = a + b · sin(c · t) (12)
where a, b and c are coefficients.
Step 4 : Repeat

Steps 2 and 3 are repeated.

2.4. External Input

In the CQMAM, the external input A j is always given so
that the key pattern does not change into other patterns.

If the pattern is given to the layer x and the initial input
does not include noise, we can use the initial input pat-
tern xx

j(0) as the external pattern. However, since the initial
input pattern sometimes includes noise, so we use the fol-
lowing pattern x̂x

j(tin) when the network becomes stable tin
as an external input. Here, tin is given by

tin = min

t


nx∑
j=1

(x̂x
j(t) − x̂x

j(t − 1)) = 0

 (13)

where nx is the number of neurons in the Key Input Part of
the layer x. And x̂x

j(t) is the quantized output of the neuron
j in the layer x at the time t.

3. Computer Experiment Results

Figures 2∼5 show the relation between damping factors
(km and kr) and one-to-many association ability. From these
results, we confirmed that the combination of the damping
factors km and kr influences the one-to-many association
ability.

4. Conclusions

In this paper, we investigated the relation between the
damping factors (km and kr) and one-to-many association
ability of the Chaotic Quaternionic Multidirectional Asso-
ciative Memory (CQMAM). As a result, we confirmed that
the combination of the damping factors km and kr influ-
ences the one-to-many association ability.
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