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Abstract—We describe results of investigating features
of irregular fluctuations of the individual response of an
excitatory cortical synapse to stimulation from the view-
point of dynamical systems. The behaviour of the data
is irregular fluctuations (short-term variabilities) and long-
term trends. At the first onset we investigate two features
of irregular fluctuations. We first apply the small-shuffle
surrogate method to investigate whether temporal correla-
tions in irregular fluctuations of the data are absent. Based
on the result we then apply the truncated Fourier transform
surrogate method to investigate nonlinearity in the irregular
fluctuations. The results indicate that the irregular fluctua-
tions have temporal correlations and are linear.

1. Introduction

Although ensemble mean responses of an excitatory cor-
tical synapse to stimulation with variable timing have been
studied, the individual response is not well understood, be-
cause it has been difficult work to measure the data. Re-
cently it has become easier to obtain sample data. To un-
derstand the data we investigate two features of irregular
fluctuations. One is whether temporal correlations in irreg-
ular fluctuations of the data are absent. The other is whether
irregular fluctuations are linear.

As shown in Figs. 1(a) and (b), the synapse data is seem-
ingly not stationary, because the behaviour of the data in-
cludes irregular fluctuations (short-term variabilities) and
long-term trends. More details concerning the measure-
ment of this data are given in Sec. 2. To investigate irregu-
lar fluctuations with long-term trends, a common approach
is to separate the irregular fluctuations and long-term trends
or to split the time series into segments that can be consid-
ered nearly stationary [1]. However, such filtering is not
always welcomed because the processed data can lead to
spurious results [1]. Hence, it will be preferable, if possi-
ble, to investigate features of irregular fluctuations without
such pre-processing. Although until recently, no surrogate
method has been able to tackle such data, two methods have
been proposed recently. One is the small-shuffle surro-
gate (SSS) method [2] and the other is the truncated Fourier
transform surrogate (TFTS) method [1]. Both the methods
can investigate features of irregular fluctuations even if they
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Figure 1: An excitatory cortical synapse time series exam-
ined in this paper: (a) whole data in black colour and data
used in red colour, and (b) the enlargement of data used.

exhibit long-term trends without pre-processing. We show
results obtained by applying the SSS and TFTS methods.

2. Individual response of an excitatory cortical synapse
to stimulation

Data for this study was extracted from cortical slices
on multi-electrode arrays from which gamma band (30–80
Hz) oscillations where initiated and recorded. Slices were
taken from the somatosensory cortex of mice and electrical
stimuli were applied at one or more locations to evoke a
gamma band response across the slice. The data analysed
in this paper is single scalar time series response to that
stimulation. Data is sampled at 20 kHz and stimulation is
applied at datum 10 000 (i.e. In Fig. 1 we see the time trace
from 0.5 sec. prior to stimulation to 1 sec. post-stumulus).
The lower panel depicts 0.2 sec. of data.

3. Methods we apply

In this section we describe methods we apply in this pa-
per, the small-shuffle surrogate (SSS) method and the trun-
cated Fourier transform surrogate (TFTS) method.
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3.1. The SSS Method

To investigate whether temporal correlations in data are
absent or data are independently distributed (ID) random
variables even if it exhibits trends, the SSS method is use-
ful [2]. Moreover, the SSS method does not depend on the
specific data distribution. In other words, SSS data have the
same probability distribution (rank distribution) as the orig-
inal data. The SSS method has proven to be effective for
tackling data exhibiting short-term variabilities and long-
term trends [2].

SSS data are generated as follows; Let the original data
be x(t), let i(t) be the index of x(t) (that is, i(t) = t, and so
x(i(t)) = x(t)), let g(t) be Gaussian random numbers and
s(t) will be the surrogate data.

(i) Obtain i′(t) = i(t) + Ag(t), where A is an amplitude.

(ii) Sort i′(t) by the rank-order and let the index of i′(t) be
î(t).

(iii) Obtain the surrogate data s(t) = x(î(t)).

It has been found that choosing A = 1.0 is adequate for
nearly all purposes. In the SSS data, local structures or
correlations in irregular fluctuations (short-term variabili-
ties) are destroyed and the global behaviours (trends) are
preserved. Further details of the method and the mecha-
nism are provided in Refs. [2]. The null hypothesis (NH)
addressed by this algorithm is that irregular fluctuations
(short-term variabilities) are ID random variables or time-
varying random variables (in other words, temporal corre-
lations in data are absent) [2].

3.2. The TFTS Method

To investigate nonlinearity in irregular fluctuations var-
ious surrogate data methods have been proposed: the
Fourier transform (FT), the amplitude adjusted Fourier
transform (AAFT), and the iterative AAFT (IAAFT) algo-
rithms [3, 4]. They are based on a linear process and ad-
dress a linear null hypothesis. These methods assume that
data is stationary. Unfortunately nonstationary data are the-
oretically incompatible with the assumption of linear surro-
gate tests and the nonstationarity is therefore very likely to
lead to incorrect results [3, 4]. Hence, it is not appropriate
to apply these methods to synapse data.

To investigate nonlinearity in irregular fluctuations (es-
pecially when they are modulated by long-term trends or
periodicities), we want to destroy nonlinearity in irregu-
lar fluctuations and preserve the global behaviours. When
data exhibit irregular fluctuations and long-term trends the
power spectrum is usually like Fig. 2. Figure 2 indicates
that the data have large peaks of power in lower frequency
domain and power in higher frequency domain is almost
white. From this we can consider that the higher frequency
domain is probably dominated by irregular fluctuations.
This implies that even if we randomize phases in the higher
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Figure 2: The estimated power spectrum of synapse data
shown in Fig. 1(b), where we use 4096 data points. Note
the logarithmic scale. We randomize phases in higher fre-
quency domain fε and other phases are untouched. The
parameter fε is the ratio of high frequency domain to the
whole frequency domain. For example, when phases with
frequency between 1500 and 2000 are randomized (that
is, 500 higher frequency domain), fε is 500/2000, that is,
fε = 0.25. We note that when showing power spectrum,
these usually correspond to each frequency with unit of
hertz (Hz) on the horizontal axis. In this paper, to explain
our proposed method more easily we use arbitrary scale
which correspond the number of data points.

frequency domain fε (see Fig. 2), the influence for long-
term trends will not be significant. Hence, we randomize
phases only in the higher frequency domain and do not al-
ter low frequency phases. In this way, long-term trends
are preserved in these unaltered low frequencies. This ap-
proach is in contrast to previously proposed linear surro-
gate methods, where all phases are randomized [4]. Since
some phases are untouched, TFTS data may still have non-
linearity. However, it is possible to discriminate between
linear and nonlinear data because the superposition princi-
ple is valid only for linear data. The NH addressed by our
algorithm is that irregular fluctuations are generated by a
stationary linear system [1].

Obviously, the surrogate data generated by the TFTS
method are influenced primarily by the choice of frequency
domain fε (see Fig. 2). The either too narrow or too wide
domain is likely to lead to wrong judgement. However, we
usually cannot determine an adequate value for fε a priori.
Hence, we increase fε to randomize the phases from higher
domain to lower domain step by step, for example by every
0.05 or 0.1. We continue until long-term trends are pre-
served in the surrogate data. In addition to visual inspec-
tion, we inspect the auto-correlation (AC) of the original
data and the surrogate data at time lag 1 because the AC at
time lag 1 must be most sensitive to the nature of the data.
When the AC falls within the distribution, we consider that
linearity and long term trends are sufficiently preserved in
the surrogate data, and then calculate the AMI. When long-
term trends are not preserved the AC falls outside the distri-
bution we do not use the data, stop increasing fε and adopt
the last result. That is, we continue until linearity or long-
term trends are preserved in the surrogate data. See more
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details on the stopping criterion in [1].
We note that we use the IAAFT algorithm to apply our

idea in this paper, however, it is possible to use the FT and
AAFT algorithms directly [1].

4. How to reject a null hypothesis

Discriminating statistics are necessary for hypothesis
testing. After calculation of the statistic, we need to in-
spect whether the NH shall be rejected or not. We choose
to use the auto-correlation function (AC) and the average
mutual information (AMI) as discriminating statistics. The
AC; an estimate of the linear correlation in data; and AMI;
a general nonlinear version of AC on a time series; can an-
swer the question: on average how much does one learn
about the future from the past.

We use both the AC and AMI for the SSS method. This
is because we have found that either statistic does not al-
ways work for certain test systems [5]. The TFTS method
preserves linearity in data. Hence, in this case we use the
AMI as a discriminating statistic [6].

To inspect whether a NH shall be rejected or not we em-
ploy Monte Carlo hypothesis testing. We check whether an
estimated statistic of the original data falls within or out-
side the distribution of the surrogate data [7]. When the
statistics fall within the distribution of the surrogate data,
the NH may not be rejected.

In this paper, we generate 99 surrogate data and hence
the significance level is between 0.01 and 0.02 for a one-
sided test with two non-independent statistics1.

5. Investigation of synapse data

We apply the SSS and TFTS methods to the synapse data
shown in Fig. 1(b). We use 4096 data points for both the
investigations.

5.1. Apply the SSS method

We first apply the SSS method to the synapse data to
investigate whether temporal correlations in data are ab-
sent or data are independently distributed (ID) random vari-
ables. If we could confirm that the data have temporal cor-
relations, we expect that the data are due to some kind of
dynamical structure.

Figure 3 shows the synapse data and one of the SSS data.
Figure 3(a) does not show significantly different behaviour
from the synapse data shown in Fig. 1(b), although slight
difference can be seen in Fig. 3(b). These figures indicate
that the SSS method generates data in which long-term be-
haviours are preserved and local structures or correlations
are destroyed.

1When generating 99 surrogate data, if two statistics are identical (de-
pendent), the significance level for the proposed test is 0.01. If the
statistics are independent, the significance level for the test is given by
1.0 − 0.99 × 0.99 = 0.0199. Hence, the reality should be somewhere
in-between.
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Figure 3: The synapse data and one of the SSS data.
(a) SSS data of whole synapse data examined and (b) an
enlargement of the synapse data in black colour and SSS
data in red colour, where we use A = 1.0.
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Figure 4: A plot of the AC and the AMI for the SSS data:
(a) AC and (b) AMI, where we use A = 1.0 and 99 SSS
data. The solid line is the synapse data and dotted lines are
the SSS data.

Figure 4 shows the result of applying the SSS method.
Figures 4(a) and (b) show that the AC and AMI show small
difference and both the AC and AMI of the synapse data fall
outside the distributions of SSS data2. Hence, we consider
that the irregular fluctuations of the synapse data would not
be ID random variables.

2In Figs. 4(a) and (b) some differences between the AC and the AMI
of the synapse data and SSS data clearly appear especially when the time
lag is relative small. This is because the information in the systems is not
retained for longer periods of time. Also, when the time lag is larger, be-
haviours of statistics of the SSS data are very similar to that of the synapse
data. This indicates that the local structures are destroyed and the global
structures are preserved in the SSS data.
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Figure 5: The synapse data and one of the TFTS data.
(a) TFTS data of whole synapse data examined and (b) an
enlargement of the synapse data in black colour and TFTS
data in red colour, where we use fε = 0.8.

5.2. Apply the TFTS method

In Section 5.1 we found that there is some kind of dy-
namics behind the irregular fluctuations of the synapse
data. Hence, as the next stage we apply the TFTS method
to investigate whether the irregular fluctuations are linear.

To generate TFTS data we increment fε in steps of 0.1.
We find that long-term trends are preserved in the TFTS
data and the AC of the synapse data at time lag 1 falls
within the distribution of the TFTS data between fε = 0.1
and fε = 0.8. However, when fε = 0.9 although the AC
of the synapse data at time lag 1 falls within the distribu-
tion of the TFTS data, long-term trends are not preserved
in the TFTS data. As mentioned previously, we adopt the
last result (that is, fε = 0.8).

Figure 5 shows the synapse data and one of the TFTS
data when fε = 0.8. Fig. 5(a) shows very similar behaviour
to Fig. 1(b), and Fig. 5(b) shows that local structures are
different between the two.

Figure 6(a) shows that the AC of the synapse data falls
within the distribution of the TFTS data and Fig. 6(b)
shows that the AC of the synapse data is almost identical
to the TFTS data. From these figures we conclude that lin-
earity and long-term trends are preserved in the TFTS data.
Figure 6(c) shows that the AMI of the synapse data falls
within the distribution of the TFTS data. Hence, we con-
sider that we cannot detect nonlinearity in irregular fluctu-
ations of the synapse data3.

6. Conclusion

We describe results of investigating features of irregular
fluctuations of synapse data. The results indicate that the ir-

3Although long-term trends are not preserved in the TFTS data when
fε = 0.9, the AMI of the synapse data falls within the distribution of the
TFTS data.
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Figure 6: A plot of the AC and the AMI: In (a) the longer
and short lines correspond to the AC at time lag 1 of the
synapse data and the TFTS data, respectively. In (b) and
(c) the solid line is the synapse data and the dotted lines are
the TFTS data.

regular fluctuations have temporal correlations and are lin-
ear.
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