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Abstract—We have devised a method for hypoth-
esis testing for the major features of multivariate data
on the basis of collective synchronization in a net-
work of non-symmetrically coupled phase oscillators
subject to a variant of Kuramoto’s dynamics. We
show through numerical experiments that the non-
symmetrical coupling allows testing whether given test
vectors match the major features.

1. Introduction

Finding patterns that represent the major features
of data is one of the most interesting applications of
large-scale databases growing as pivotal information
infrastructures of the society. Such social needs have
accelerated the development of mathematical methods
for data mining [1]–[4]. Recently, we have devised a
method for feature extraction from multivariate data
on the basis of collective synchronization in a network
of coupled phase oscillators [5]–[8]. This method was
termed data synchronization. In data synchronization,
we use a network of coupled phase oscillators subject
to a variant of Kuramoto’s model [9]–[10]. The phase
oscillators carry multivariate data in their natural fre-
quencies and update their rhythms through nonlin-
ear couplings between phase oscillators. Consequently,
partial synchronizations of the oscillators are achieved,
whose common frequencies are interpreted as the gen-
eral features of the data set.

An advantage of data synchronization is that it re-
quires no prior information about the feature patterns
to be extracted, unlike the self-organizing map (SOM)
algorithm, devised by Kohonen, as a popular method
for feature extraction [1, 2]. Recently, data synchro-
nization has been shown to be equivalent to SOM near
synchronous states where the equations governing data
synchronization can be linearized, in the sense that the
linearized equations become equivalent to the competi-
tive learning rule for SOM [6, 8]. It can be said that the
reference vectors are spontaneously generated during
the nonlinear regime of the dynamics in data synchro-

nization. This fact enables us to apply data synchro-
nization to databases of large-scale to which SOM can-
not be applied because of lack of prior knowledge for
the reference vectors. However, a question was raised
to our previous study [8] in that SOM associated with
statistical analysis such as principal component anal-
ysis for determining appropriate reference vectors, for
instance, as has been shown in [11], may suffice. This
question is the motivation of this study.

In this paper, we show that prior knowledge as well
as hypothesis on the general features of data can be
handled and tested by a network of non-symmetrically
coupled phase oscillators. Test vectors are encoded
into the natural frequencies of particular phase oscilla-
tors that are termed “stubborn oscillators”. The stub-
born oscillators do not change their rhythms due to a
null coupling constant with other oscillators, whereas
non-stubborn oscillators are forced to synchronize with
the stubborn oscillators through a large coupling con-
stant. If the stubborn oscillators recruit many oscil-
lators into major synchronous groups, then the corre-
sponding test vectors may be interpreted as capturing
the general features of the data. This paper is orga-
nized as follows. In section 2, we describe the theory
of our method. In section 3, we show numerical exper-
iments for hypothesis testing of feature patterns for
numerical data with three degrees of freedom. The
low dimensionality of the data is taken for visual con-
venience of results and is not due to the inapplicability
of our method to data with high degrees of freedom.
In sections 4, we discuss results and make concluding
remarks.

2. Theory

We describe the theory of data synchronization
in a network of non-symmetrically coupled phase
oscillators on the basis of our previous model [5,
6]. Suppose that we are given N sample vectors
{xi = (xi1, · · · , xiD)}N

i=1 and S test vectors {yj =
(yj1, · · · , yjD)}S

j=1, both {xi}N
i=1 and {yj}S

j=1 with D
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degrees of freedom. The test vectors {yj}S
j=1 represent

a hypothesis for the general features of the sample data
{xi}N

i=1, which may be acquired using a data prepro-
cessor. We assign xi and yj to the natural frequencies
of the phase oscillators subject to the following equa-
tions with n = 1, · · · , D:

θ̇in = xin +
1
Ni

[ N∑
k=1

K1H
(
d̃1(i, k)

)
sin (θkn − θin)

+
S∑

j=1

K2H
(
d̃2(i, j)

)
sin (φjn − θin)

]
, (1)

φ̇jn = yjn , (2)

where d̃1(i, k) =| xi − xk | and d̃2(i, j) =| xi − yj |.
The phase oscillators carrying yj are the stubborn os-
cillators. K1 and K2, K1 < K2, are a small positive
coupling constant between non-stubborn phase oscil-
lators and a large positive coupling constant between
a non-stubborn oscillator and a stubborn oscillator,
respectively. Ni is the number of neighboring vectors
to xi. θin and φjn are the nth entries of the phase
vectors θi = (θi1, · · · , θiD) and φj = (φj1, · · · , φjD)
corresponding to xi and yj , respectively. Their initial
values are given as random numbers. θ̇i represents the
updated value of xi at each instant in the time evolu-
tion. The partitioning function H restricts the range
of interactions between phase oscillators: H

(
d̃
)

= 1

if d̃ ≤ d̃0 and H
(
d̃
)

= 0 otherwise, where d̃ = d̃1(i, k)

or d̃2(i, j). d̃0 = α | xi | with a positive constant α,
which determines Ni neighboring vectors with which
the phase vector θi can interact. The parameter α rep-
resents tolerance to discriminate neighbors from non-
neighbors having features distinct from those of xi.

In this way, each non-stubborn oscillator conveys the
original and updated data via its natural and adaptive
rhythms, respectively. In contrast, the stubborn oscil-
lators do not change their rhythms, as is apparent from
Eq. (2), but forces the non-stubborn oscillators to syn-
chronize with them through the coupling constant K2.

Under appropriate settings of K1, K2 and α, partial
synchronous groups of phase oscillators will be gen-
erated [5, 6]. The common frequency vector of each
synchronous group is interpreted as the general fea-
ture of the synchronous group. In particular, the test
vector yj can be said to match a major feature of
the sample data, if the jth stubborn oscillator recruits
many oscillators to form a synchronous group. Thus,
data synchronization with non-symmetrically coupled
phase oscillators achieves hypothesis testing for the
test vectors {yj}S

j=1 as candidates of the major fea-
tures of the sample data.

3. Numerical Experiments

We conducted numerical experiments for data clus-
tering using multivariate data with three degrees of
freedom (D = 3). In these experiments, we supposed
three groups of multivariate data to each of which sixty
data vectors should belong, given as xi = (1 + ε, ε, ε),
(ε, 1+ε, ε) and (ε, ε, 1+ε) with Gaussian random num-
bers ε of mean 0 and variance 0.1. These groups were
represented by the template vectors (1, 0, 0), (0, 1, 0)
and (0, 0, 1), respectively. We randomly chosen three
test vectors, one vector from each of the three groups.
These test vectors were labeled as classes 1, 2 and 3
and were supposed to represent prior knowledge for
the general features of the data set. The test vectors
were encoded into the natural frequencies of stubborn
oscillators.

In the first experiment, we used a network of sym-
metrically coupled phase oscillators without the stub-
born oscillators. The data vectors excluding the
test vectors, i.e., 177 data vectors were encoded into
the natural frequencies of non-stubborn oscillators.
This experiment represents a situation where no prior
knowledge is available for the general features of the
data set. The coupling constants were set to K1 = 0.5
and K2 = 0. The setting of K1 was made taking the
variance in ε into consideration. Results are shown in
Fig. 1. Data synchronization generated the correct fea-
ture of each group, i.e., (1, 0, 0), (0, 1, 0) and (0, 0, 1),
to which all member vectors were entrained.

In the second experiment, we used a network of non-
symmetrically coupled phase oscillators with the stub-
born oscillators. The multivariate data including the
test vectors, i.e., 180 data vectors were encoded into
the natural frequencies of the oscillators. The coupling
constants were set to K1 = 0.5 and K2 = 5.0. This
experiment represents a situation where appropriate
prior knowledge is given for the general features of the
data set. Results are shown in Fig. 2. As expected, the
stubborn oscillators seem to have recruited all mem-
bers of each group. Thus, the hypothesis that the test
vectors of classes 1, 2 and 3 match the major features
of the data set can be accepted on the basis of the size
of each synchronous group.

Figure 3 presents the comparison of extracted fea-
ture vectors between the two experiments, visualizing
how the member vectors of each group is attracted to
the test vectors. The member vectors of each group
have been entrained to the test vectors due to the non-
symmetric coupling, which gives rise to a certain de-
gree of bias in data synchronization. To assess the bias,
we estimated the mean diversity of frequency vectors
over synchronized clusters [5], denoted by σ defined as

σ =
1

N + S

N+S∑
i=1

σi

- 492 -



-0.4
-0.2

0
0.2

0.4
0.6

0.8
1
1.2

x
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4

y

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

z

Figure 1: Data clustering and feature extraction for
three-dimensional data vectors using symmetrically
coupled phase oscillators. The data are shown by ×
and three extracted feature vectors by + and solid
lines.

=
1

N + S

N+S∑
i=1

(
1
Ni

N+S∑
k=1

H
(
d̃i,k

) di,k

d̃0

)
, (3)

where di,k is the distance between neighboring fre-
quency vectors at each instant during the synchroniza-
tion process. If Ni = 0, σi is defined to be zero. As
perfect synchronization is achieved, σ → 0. Estimates
of σ for the two experiments are shown in Fig. 4. A
much higher degree of synchrony is achieved by data
synchronization without the stubborn oscillators. The
difference in σ between the two experiments expresses
the bias of the test vectors to the true features.

4. Discussion and Conclusion

The present numerical experiments support the va-
lidity of our method. When a test vector matches one
of the general features of the data set, it will recruit
many data vectors into a synchronous cluster. If the
test vector matches neither of the general features, it
will generate no synchronous cluster or a tiny syn-
chronous cluster. The size of the synchronous cluster
can be a measure for evaluating the degree of gener-
ality of the test vector. The reliability of hypothesis
testing for the test vectors may be related to the mean

class 1
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Figure 2: Data clustering and feature extrac-
tion for three-dimensional data vectors using non-
symmetrically coupled phase oscillators with the stub-
born oscillators of classes 1, 2 and 3. The data are
shown by squares and three extracted feature vectors
by + and solid, dashed and dotted lines.

diversity σ, as shown in Fig. 4.
In the limit of perfect synchronization, the mean di-

versity σ → 0. Accordingly, the deviation of estimated
σ from this limit may be used to evaluate the degree
of bias of the test vectors to the true feature vectors.
As the deviation becomes large, the test vectors be-
come less reliable in representing the general features
of the data set. Let us consider a situation such that
given two sets of test vectors, we are required to judge
which set is more appropriate to represent the general
features of the data set. In such a situation, we can
make a judge by comparing estimates of σ. Although
this is a rough idea to assess the statistical reliability
of the test vectors, possible use of σ may be an ad-
vantage of data synchronization in that it is difficult,
if not impossible, for the SOM algorithm to evaluate
the statistical reliability of the outcome of reference
vectors.

Establishing an algorithm for assessing the reliabil-
ity of hypothesis testing on the basis of σ as a function
of the coupling constants K1 and K2 and applying the
present method to real-world data are issues of interest
and worth investigating in future studies.
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Figure 3: Comparison of extracted feature vectors be-
tween the two experiments. Feature vectors extracted
using the stubborn oscillators are indicated by red lines
and +, those without the stubborn oscillators by green
lines and ×. The test vectors are labeled as classes 1,
2 and 3.
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