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Abstract—In the heart, depolarization may occur early
in the repolarization of the action potential, which causes
induced activity. This induced activity is called early af-
terdepolarization (EAD) and considered to be the arrhyth-
mia itself and, may cause sudden death. The study of ar-
rhythmias using cardiac mathematical models is important
to reduce the risk of sudden death. In this study, we use
a cardiac mathematical model to elucidate the mechanism
of EAD generation. By parameterizing the intracellular
sodium ion concentration, we could explain the transient
EAD generation in the non-parameterized system.

1. Introduction

Heart disease is a dangerous and life-threatening illness
and one of the leading causes of death. Among it, sud-
den cardiac death is mainly caused by arrhythmias such as
ventricular tachycardia and ventricular fibrillation. Electri-
cal activity occurs in the cell membranes of cardiac muscle
cells, it contracts the heart periodically. Disturbances in
this electrical activity can cause depolarization in the early
stages of repolarization of the action potential, which lead
to early afterdepolarization (EAD).

EAD is associated with lethal arrhythmias such as QT
prolongation and Torsade de Pointes (TdP). QT prolon-
gation triggered by EAD may also lead to sudden death
through ventricular fibrillation. The occurrence of sus-
tained EAD is associated with either an increase in L-type
calcium current or a decrease in rapidly delayed rectifying
potassium ion current. Recently, the relationship between
the generation of EAD and intracellular sodium concentra-
tion [Na]i has been clarified[1].

The purpose of this paper is to clarify the mecha-
nism of transient EADs generation in the O’Hara model
that is the human ventricular model[2]. Studying the
[Na]i-parameterized system and its bifurcation, we were
able to explain the transient EADs generation in the non-
parameterized system.

2. Model Equations

T. O’Hara proposed a detailed mathematical model of
the electrophysiology of cardiomyocytes and Ca circula-
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tion in the unaffected human ventricle[2]. The O’Hara
model shows the time variation of the cell membrane po-
tential in the human ventricular muscle. The cell membrane
potential of the O’Hara model is represented by

C
dV
dt
= − (INa + Ito + ICaL + ICaNa + ICaK

+ IKr + IKs + IK1 + INaCa + INaK

+ INab + ICab + IKb + IpCa + Istim)

(1)

where C is the membrane capacitor, t is time, and INa to
IpCa are the respective ion currents. Istim represents the
stimulation current with period of 2000(ms), intensity of
60(µA) and duration of 1.0(ms). The O’Hara model con-
sists of 41 ordinary differential equations. 14 currents are
shown in Tab. 1. In particular, IKr are given by the follow-
ing equations.

IKr = GKr ·
√

[K+]o

5.4
· xr · RKr · (V − EK) (2)

where GKr is the value that determines the ease of passage
of IKr, [K+]o is the external concentration of K+, xr is acti-
vation/deactivation for IKr, EK is the reversal potential. RKr

is given by

RKr =
1

(1 + exp V+55
75 ) · (1 + exp( V−10

30 ))
(3)

The ordinary differential equation for the intracellular
sodium concentration is shown below.

d[Na+]i

dt
= −(INa + INaL + 3 · INaCa,i + 3 · INaK + INab)

·
Acap

F · vmyo
+ Jdi f f ,Na ·

vss

vmyo

(4)

where INa, INaL and INab are shown in Tab. 1, INaCa,i is my-
oplasmic component of Na+ /Ca2+ exchange current, Acap

is the capacitive area, F is the faraday constant, vmyo is the
volume of the myoplasmic compartment, Jdi f f ,na is diffu-
sion of Na+ from subspace to myoplasm, vss is the volume
of the subspace compartment. Jdi f f ,Na is given by

Jdi f f ,Na =
[Na+]ss − [Na+]i

τdi f f ,Na
(5)
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where [Na+]ss is concentration of ion Na, in the sub-
cellular subspace compartment, τdi f f ,Na = 2.0(ms).

Table 1: Ionic currents in O’Hara model

Abbreviation name of ionic current
INa Na current
Ito transient outward current
IKr rapidly activated K current
IKs slowly activated K current
IK1 inward rectifying K current

INaCa Na-Ca exchange current
INaK Na-K pump current
ICaK Ca-K pump current
ICaNa Ca-Na pump current
ICaL L-type Ca current
INab background Na current
ICab background Ca current
IKb background K current

IpCa
Ca pump current

in muscle cell membrane

3. Result

Figure 1 shows a two-parameter bifurcation diagram
with the average number (n=50) of peaks of the membrane
potential in one period of the external current in the [Na]i-
parameterized system. The horizontal axis is the GKr mul-
tiple denoted by ZKr. The orange and gray curves indi-
cate period-doubling and Neimark-Sacker bifurcation sets,
respectively. To obtain bifurcation sets in two-parameter
plane, we used the algorithm proposed by Kawakami[3].
These two bifurcations were subcritical, so we observed
neither stable higher-periodic solutions nor stable quasi-
periodic solutions. The purple squares and black circles
mean the maximum and minimum values of the intracel-
lular sodium concentration at the steady state in the non-
[Na]i-parameterized system (original O’Hara model).

First, we show the waveforms of the membrane potential
in the [Na]i-parameterized system. We observed a normal
state as shown in Fig. 2 in the deep blue region in Fig. 1.
In the light blue region alternate EADs occur as shown in
Fig. 3. It became sustained EADs (Fig. 4) in the green
region, and the number of peaks was increased in the or-
ange and brown areas. We observed 2:1 EADs (Fig. 5) and
sustained 4 EADs (Fig. 6) in these areas.

Second, we show the waveforms of the membrane poten-
tial in the original system. Figure 7 shows the waveforms
when ZKr = 0.44 and the initial state of [Na]i is 2.0. We
can see that the state is sustained EADs at these two values
in Fig. 1. Therefore, we observed the sustained EADs at
the beginning of time in Fig. 7(a). Then, [Na]i was grad-
ually increased and when it entered the light blue area, we
observed alternate EADs as shown in Fig. 7(b). The con-
vergence point of [Na]i in the original system was in the

deep blue area in Fig. 1, so finally we observed the normal
waveforms (Fig. 7(c)) as a steady state in the original sys-
tem. The change in [Na]i in the same interval is shown in
Fig. 8. Figure 9 shows the waveforms when ZKr = 0.36 and
the initial state of [Na]i is 2.0. In this case we observed 4
EADs (Fig. 9(a)) and after the transition the final state was
alternate EADs (Fig. 9(c)). The change in [Na]i in the
same interval is shown in Fig. 10.

Figure 1: Bifurcation diagram in [Na]i-parameterized system
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Figure 2: Normal waveform in blue area in Fig. 1
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Figure 3: Alternate EAD in light blue area in Fig. 1
([Na]i=2.0, ZKr=0.48)
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Figure 4: Sustained EAD in green area in Fig. 1
([Na]i=7.0, ZKr=0.37)
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Figure 5: 2:1 EADs in orenge area in Fig. 1
([Na]i=4.0, ZKr=0.38)
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Figure 6: Sustained 4 EADs in brown area in Fig. 1
([Na]i=2.0, ZKr=0.38)

4. Conclusion

Transient EAD development was investigated using the
O’Hara model, a human ventricular myocyte model. To
begin with, we considered the [Na]i-parameterized system.
We calculated bifurcation sets, and made a two-parameter
diagram in which what kinds of EADs were observed.

Next, using this diagram, we clarified the transient EAD
appearance and disappearance. Usually, analysis of tran-
sient states was very difficult. However, in this study, con-
sidering the [Na]i-parameterized system we achieved the
transient EADs analysis. To study the detailed bifurcation
structure is one of our future problems.
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Figure 7: Membrane potential in original system at ZKr = 0.44
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Figure 8: [Na]i in original system at ZKr = 0.44

-100

-50

 0

 50

 65000  70000  75000

P
o
te

n
ti

a
l 

(m
V

)

(a)

-100

-50

 0

 50

 130000  135000

Time (ms)

(b)

-100

-50

 0

 50

1e+8

(c)

Figure 9: Membrane potential in original system at ZKr = 0.36
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Figure 10: [Na]i in original system at ZKr = 0.36
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