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Abstract—The uncontrolled manifold analysis provides
the synergy index, which quantifies how well a neuro-
musculo-skeletal system of the animal body is coordinated
to maintain a certain movement such as walking. The
synergy index has experimentally been estimated from ob-
served data. In this study, we propose a theory that gives
the synergy index of a stable rhythmic movement from dy-
namical models by using the Floquet theory for limit cy-
cles. The synergy index of an oscillatory motion in a sim-
ple model is calculated as an illustration of the theory.

1. Introduction

The body of animals has redundant degrees of freedom
(DOFs) to solve motor tasks in their voluntary movements.
For example, the arms and legs have more joints than
needed to specify the spatial position and orientation of the
hands and feet, and the muscles are influenced by more
motoneurons than needed to generate identical muscle ac-
tivities [1]. How animals coordinate the redundant DOFs
has been recognized as a central problem in the study of
motor control and learning [2].
Uncontrolled manifold (UCM) analysis is a quantitative

approach to this problem, which is based on the dynami-
cal systems perspective [3]. The UCM analysis provides
the synergy index, which quantifies the extent to which the
redundant DOFs is coordinated in stabilizing the perfor-
mance of motor tasks under internal and external pertur-
bations, and how flexible the coordination is. The synergy
index has experimentally been estimated and analyzed for a
number of functional tasks by the UCM analysis. However,
the relation between the synergy index and the underlying
dynamics of the motor behavior remains unexplored theo-
retically.
If a theory that relates the synergy index to the system

parameters such as the geometric parameters of the body
and viscoelasticity of actuators is established, it will facili-
tate parametric sensitivity analysis of the synergy in motor
tasks. It would also make optimization and assessment of
the robustness of the synergy index more tractable when
designing devices such as orthosis, prosthesis, exoskeletal
systems and autonomous robots. Furthermore, theoretical

knowledge of the dependence of the synergy index on the
body properties can be a guiding principle for clarifying the
causes of motor disorders and can give some implications
for recovery and rehabilitation [4].
In this study, we propose a theory that relates the syn-

ergy index of stable periodic motions in dynamical systems
subjected to weak white Gaussian noise on the basis of the
Floquet theory. The fundamental properties of the Floquet
vectors [5] simplify the analysis of the covariance matrix
of the periodic motion, from which the synergy index can
be calculated. We apply our theory to a simple model of
oscillatory motions and compare the results with direct nu-
merical simulation of the model equation.

2. UCM analysis using the Floquet theory

2.1. Model

We consider a randomly perturbed dynamical system for
a state variable x ∈ Ω ⊂ Rn,

ẋ = f (x) + εP(x)ξ(t), (1)

where f (x) ∈ Rn is a vector field describing the unper-
turbed dynamics, P(x) ∈ Rn×n is a matrix function, and
ξ(t) ∈ Rn is the random perturbation whose elements
ξi(t) (i = 1, 2, · · · , n) are mutually independent white Gaus-
sian noise of zero mean and unit variance. The constant
ε ≥ 0 determines the noise intensity and is assumed to be
small. We interpret the stochastic differential equation (1)
in the Ito sense [6]. It is assumed that the system Eq. (1)
has a linearly stable limit-cycle solution x0(t) with a period
T , i.e. x0(t) = x0(t + T ) when it is unperturbed (ε = 0).

2.2. Floquet vectors

The stability of a limit cycle is characterized by the Flo-
quet multipliers, which are the eigenvalues of the mon-
odromy matrix of the limit cycle, and by the associated
eigenvectors called the Floquet vectors [5]. We denote
the Floquet vectors as {zi(t∗)}ni=1, which are defined at each
point on the limit cycle x0(t∗). If the limit cycle is lin-
early stable, one of the Floquet multipliers is unity and
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the other multipliers lie within the unit circle. We de-
note the Floquet vector with the unit Floquet multiplier
as z1(t∗). We also introduce the adjoint Floquet vectors
{ z̃i(t∗)}ni=1 such that 〈 z̃i(t∗), z j(t∗)〉 = δi j holds, where 〈·, ·〉
denotes an inner product and δi j the Kronecker’s delta
symbol. We denote a matrix of the Floquet vectors as
Z(t∗) = (z2(t∗), z3(t∗), · · · , zn(t∗)) ∈ Rn×(n−1), and similarly
a matrix of the adjoint Floquet vectors as Z̃(t∗). The Flo-
quet vectors and their adjoints can be obtained by using the
numerical method developed for calculating the covariant
Lyapunov vectors of continuous dynamical systems [7].

2.3. UCM analysis of periodic motions

Suppose that we obtain sample paths from the system (1)
that can be decomposed into N cycles, {xi(t)}Ni=1. Each cy-
cle xi(t) is defined on its own time domain Ti ≡ [0, Ti]. By
using the normalization procedure that we explain later, we
transform all the cycles so that they have the same length
in time. The normalized cycles {x̃i(τ)}Ni=1 are defined on the
same time domain T̃ ≡ [0, T̃ ]. We denote the average of
the normalized cycles as x̃0(τ).
The performance of a periodic motor task is measured by

g(x) ∈ Rm, which is called a performance variable. When
the condition m < n is satisfied, the system (1) has redun-
dant DOFs in generating the identical performance. For
example, the position of the center of mass of the body and
the end-effector position can be taken as the performance
variables [2].
At each moment in the normalized time domain τ∗ ∈ T̃ ,

we define the UCMU(τ∗) as a subset ofΩ whose elements
have the same performance variable as that evaluated on
the averaged cycle, i.e.

U(τ∗) ≡ g−1(g(x̃0(τ∗))). (2)

The distribution of the data points {x̃i(τ∗)}Ni=1 gives the de-
gree to which the redundant DOFs are coordinated in sta-
bilizing the performance variable when the state variable is
perturbed, and how flexible the coordination is.
The deviation of the performance variable of the ith nor-

malized cycle x̃i(τ∗) from that of the averaged cycle x̃0(τ∗)
can be approximated as

g(x̃i(τ∗))− g(x̃0(τ∗))≈ J(τ∗)(x̃i(τ∗)− x̃0(τ∗)), (3)

where J(τ∗) ≡ Dg(x̃0(τ∗)) ∈ Rm×n is the Jacobian matrix of
g at x̃0(τ∗). We decompose the deviation σi(τ∗) ≡ x̃i(τ∗) −
x̃0(τ∗) of the ith normalized cycle from the averaged cycle
into two parts as

σi(τ∗) = σUCMi (τ∗) + σORTi (τ∗) (4)

with

σUCMi (τ∗) = (I − J+(τ∗)J(τ∗))σi(τ∗) (5)

and

σORTi (τ∗) = J+(τ∗)J(τ∗)σi(τ∗), (6)

where I is an identity matrix and J+(τ∗) is the Moore-
Penrose pseudoinverse of J(τ∗). The first term σUCMi (τ∗) is
the projection of the deviation onto the nullspace of J(τ∗),
which gives a linear approximation to the UCM at x̃0(τ∗).
The second term σORTi (τ∗) is the projection of the deviation
onto its orthogonal complement.
We denote the variances of the Euclidean norms of these

terms normalized by the number of DOFs in the corre-
sponding subspaces as

VUCM(τ∗) =
1

n − m
1
N

N∑
i=1
||σUCMi (τ∗)||2 (7)

and

VORT(τ∗) =
1
m
1
N

N∑
i=1
||σORTi (τ∗)||2. (8)

The synergy index is then given by

S (τ∗) =
VUCM(τ∗) − VORT(τ∗)
VUCM(τ∗) + VORT(τ∗)

. (9)

When this index is large, the coordination of the redundant
DOFs strongly stabilizes the performance of the task.

2.4. Time-normalization procedure

The time normalization procedure of the stochastic cy-
cles {xi(t)}Ni=1 has been performed by rescaling of the wave-
form x̃i(τ) = xi((T̃/Ti)t) in conventional experimental
studies. In this study, we propose an alternative procedure
that utilizes the asymptotic phase [8], because it gives a
more natural equivalence relation on the state space.
Suppose that the noise term of the system (1) is absent

for the moment. We can introduce an asymptotic phase
φ : A → [0,T ) within the basin of attractionA ⊂ Ω of the
limit cycle x0(t), such that

φ̇(x(t)) = 1 (10)

holds for any x ∈ A. The set of states Iφ ≡ {x ∈
A | φ(x) = φ} that share the same asymptotic phase φ,
called the isochron [8], produces the same long-term be-
havior. Namely, initial conditions taken from the same
isochron converge to the same trajectory on the limit cy-
cle when the system is unperturbed.
We normalize the stochastic cycles so that the states

share the same asymptotic phase, i.e., we define x̃i(τ) =
xi(t) where τ = φ(xi(t)) at each moment in the normalized
time domain T̃ = [0, T ]. We also require that t1 < t2 if
τ1 < τ2, so that the asymptotic phase monotonically in-
creases with time. In the following, we use the phase vari-
able φ to express the normalized time instead of τ.
The isochron Iφ∗ is generally difficult to obtain. There-

fore, we use a linear approximation to the isochron Īφ∗ in
evaluating the asymptotic phase of the state. It is known
that the adjoint Floquet vector z̃1(φ∗) corresponding to the
unit Floquet multiplier is a normal vector of the isochron
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at x0(φ∗) [9]. Therefore, the linear approximation of the
isochron is given by

Īφ∗ ≡ {x ∈ A | 〈 z̃1(φ∗), x − x0(φ∗)〉 = 0 }. (11)

2.5. Calculation of the synergy index

We introduce a coordinate transformation x �→ (φ, ρ) de-
fined by

x = x0(φ) + Z(φ)ρ. (12)

If we fix φ = φ∗ on the right-hand side of Eq. (12), the
asymptotic phase of x on the left-hand side is always given
by φ∗ for any ρ within the linear approximation, because,
from the biorthogonality of the Floquet vectors and their
adjoints, the vectors {zi(φ∗)}ni=2 span a plane Ĩφ∗ that is tan-
gent to the isochron. Hence, the conditional covariance of
ρ given φ = φ∗, which we denote as Σφ∗ ∈ R(n−1)×(n−1),
completely determines VUCM(φ∗) and VORT(φ∗) in the lin-
ear approximation.
As we will discuss in detail in our future publication,

we can derive approximate expressions for the conditional
mean μφ∗ ∈ Rn−1 and the covariance Σφ∗ up to the first order
in the noise intensity ε as follows. Firstly, the conditional
mean is approximated as

μφ∗ ≈ 0. (13)

Therefore, the average cycle x̃0(φ) of the normalized cycles
is nearly identical with the unperturbed limit-cycle orbit
x0(φ). Secondly, the conditional covariance approximately
satisfies

Σφ∗ ≈ AΣφ∗AT + ε2Πφ∗ , (14)

where

A = exp
∫ T

0
Λ(φ∗ + φ)dφ = exp

∫ T

0
Λ(φ)dφ, (15)

Πφ∗ = A
⎛⎜⎜⎜⎜⎜⎝
∫ T

0
Λ̂φ∗(φ)Z̃T(φ∗+φ)P(x0(φ∗+φ))

PT(x0(φ∗+φ))Z̃(φ∗+φ)Λ̂Tφ∗(φ)dφ
⎞⎟⎟⎟⎟⎟⎠AT, (16)

and

Λ(φ) = Z̃(φ)TD f (x0(φ))Z(φ), (17)

Λ̂φ∗(φ) = exp
∫ φ

0
−Λ(φ∗ + u)du. (18)

Here, the matrix AT is the transpose of A. By permutating
the column vector of Z(φ), we can assume, without loss of
generality, that the matrix A has a block diagonal form

A = diag(λ̄2,· · ·, λ̄r, Λ̄r+1,· · ·, Λ̄r+c), (19)

whose diagonal elements correspond to the Floquet mul-
tipliers. Here, λ̄i ∈ R, (i = 2, · · · , r), Λ̄i ∈ R2×2, (i =
r + 1, · · · , r + c), and r + 2c = n holds.

Once Σφ∗ is obtained, we can calculate the synergy index
using the following relations:

VUCM(φ∗)=
tr(ZT(φ∗)(I−J+(φ∗)J(φ∗))Z(φ∗)Σφ∗)

n − m
, (20)

VORT(φ∗)=
1
m
tr(ZT(φ∗)J+(φ∗)J(φ∗)Z(φ∗)Σφ∗ ), (21)

where tr(·) ∈ R is the trace of a matrix.

3. Example

As a simple example, we consider an analytically
tractable dynamical system for a two-dimensional state
variable x = (x, y)T given by

f (x) =
(

x − (2π + 1)y − (x2 + y2)(x − y)
(2π + 1)x + y − (x2 + y2)(x + y)

)
. (22)

This oscillator, called the Stuart-Landau oscillator [9], is
a generic example of stable periodic motions because it
arises universally in the vicinity of the supercritical Hopf
bifurcation. It has a stable limit-cycle orbit as shown in
Fig. 1. We set the zero point of the asymptotic phase as
φ((1, 0)T) = 0.
When we consider the case P(x) = I and g(x) = x,

where the performance variable is a scalar function, the
synergy index can be calculated as

S (φ) = sin 2φ, (23)

by the proposed theory. This result is compared with that
of direct numerical simulations of the stochastic differential
equation (1). As shown in Fig. 2, good agreement between
the results is observed.

4. Summary

We have proposed a theory that relates the synergy index
of a periodic motion to the Floquet eigenvalues and eigen-
vectors of the limit-cycle orbit, and applied it to a simple
mathematical model of noisy limit-cycle dynamics. The
theory would be useful in performing the UCM analysis
for dynamical systems models of body movement.
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Figure 1: Limit-cycle solution of a Stuart-Landau oscilla-
tor.
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Figure 2: Comparison of the synergy index obtained by
the proposed theory and by direct numerical simulations
performed for several noise intensities.
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[7] F. Ginelli, H. Chaté, R. Livi and A. Politi, ”Covariant
Lyapunov vectors”, J. Phys. A: Math. Theor., vol.46,
2013.

[8] G. B. Ermentrout and D. H. Terman, ”Mathematical
Foundatations of Neuroscience”, Springer, 2010.

[9] Y. Kuramoto, ”Chemical Oscillations, Waves, and
Turbulence”, Dover Publications, 2003.

- 671 -


	Navigation Page
	Session at a glance

