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Abstract— In this paper, we investigate an effect of
pattern overlap in a delay feedback control method for a
chaotic neural network (CNN) model with chaotic asso-
ciative memories. In the memory search of recalling pro-
cess, it is important to investigate the control method which
could change the chaotic wandering state to a certain peri-
odic state gradually and softly. As one of control meth-
ods, we have proposed a delay feedback control method
for a chaotic neural network model. From computer experi-
ments, we succeeded to stabilize chaotic orbits which wan-
der among memory patterns by applying the delay feed-
back control. Furthermore, it is shown that a stabilized
state depends on the overlap between itself and a state of
the CNN model at the moment when the control signal was
injected.

1. Introduction

Inspired by the investigations of the potentialities of
chaotic dynamics in neural network model done by several
pioneer workers [1]-[6], the possibility that chaos could
play important roles in flexible information processing of
biological systems has received much attention.

From their biological and computer experiments in the
olfactory bulb, Skarda and Freemann presented an attrac-
tive idea in recalling process and learning process[4]: (i)
During waiting for input signals, the dynamical response
of the olfactory system falls into a highly developed chaotic
attractor. (ii) When a certain memorized input is presented,
suddenly the highly developed chaotic response shrinks
into a weak chaotic attractor or a limit cycle. Thus, in
recalling process, chaos could ensure rapid and unbiased
access to previously trained patterns. From the theoreti-
cal viewpoints, Nara and Davis presented interesting re-
sults in complex memory search of neural network model
with multi-cyclic memory patterns[6]. Kuroiwa, Nara et al.
gave interesting results that chaotic dynamics enable rapid
access to the target attractor of a memory fragment [7].

In realizing a complex memory search based on a chaotic
wandering state, it is important to control chaotic dynam-
ics gradually and softly. As one of control methods, we
have proposed a delay feedback control method for a CNN
model with chaotic associative memories[8, 9]. By apply-
ing the control signal, we have succeeded to stabilize the

model into a certain periodic orbit corresponding to a mem-
ory pattern, which became unstable under bifurcation pro-
cesses. However, we do not know where the system con-
verges into a priori in a delay feedback control method.
The stabilized state would depend on the overlap between
itself and a state of the CNN model at the moment when
the control signal was injected. Therefore, the purpose of
this paper is to investigate an effect of pattern overlap in the
delay feedback control method for a CNN model.

2. CNN Model

Let us present the CNN model proposed by Adachi and
Aihara [5], briefly. The updating rule of ith neuron in the
CNN model at time ¢ is given as follows:
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where t represents a discrete time (¢ = 0, 1,2, - - -), the x;(¢)
is the output of the ith neuron at time ¢, the internal state
variable of 7;(¢) is a feedback input from the other neurons
in the CNN model which represents the effect of the as-
sociative memory, the internal state variable of ;(¢) is the
refractoriness effect of the neuron at time ¢, g; is a constant
bias input of the ith neuron, and N is the number of neurons
in the network. The parameter « is the refractory scaling of
neuron. The parameters ky and k, are the decay parameters
for the feedback inputs and the refractoriness, respectively.

The function f( - ) is referred as the output function. In
this paper, we employ sigmoid function with the steepness
parameter € as follows:

1
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The parameters w;; are synaptic weights to the ith neuron
from the jth neuron as given,

1 P
Wi = ;e-ff - DEE - 1) (5)
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where fl.p is the binary patterns stored as basal memory pat-
terns in the CNN model and the ith component of the pth
binary pattern takes O or 1. The parameter P is the to-
tal number of stored memory patterns. In this paper, we
employ memory patterns as shown in figure 1. Each pat-
tern consists of 10 X 10 pixels, indicating N = 100. The
black boxes represent excited neurons which take 1, and
the white boxes represent restraining neurons which take
0.

3. Delay Feedback Control Method in CNN Model

Let us explain a delay feedback control method in a CNN
model, briefly[9]. The delay feedback control method is
described as follows:

x(t+ 1) =fit+ D+ L@+ D+ Fie+ 1) (6)

Fi(t +1) = kgFi(1) + Bxi(t — 7) (N

where F;(f) is a control signal, 8 is the strength of the con-
trol signal, 7 represents the delay time, and the parameter
k4 is the decay parameters for the control signal. The vari-
ables of ;(z+ 1) and {;(¢+ 1) are the same ones as equations
(2) and (3), respectively.

In a CNN model, the existence of the refractory scaling
a and the steepness of the sigmoid function € introduce to
chaotic dynamics. In usual, the steepness of the sigmoid
function € is fixed. Thus, we could control chaotic dy-
namics by adjusting the effect of the refractory scaling «
through the delay feedback control.

4. Computer Experiments

4.1. Parameter Dependence of Controlled Dynamics

In the delay feedback control method, the parameters are
B, T and k,. Especially, the parameter dependence on 8 and
kg 1s important. If we can identify the system a priori, it is
easy to determine the value of the parameters. In general,
however, we could not know them a priori. Therefore, we
investigate the parameter dependence of the controlled sys-
tem dynamics on 8 and k.

In the computer experiment, we fix the delay time, 7 = 1,
and change the value of the strength of the control signal,
B, and the decay parameters for the control signal, k,, var-
iously. In the CNN model, we choose parameter value as
follows, k. = 0.8, kf = 0.8, a; = 2 and € = 0.1. We set
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Figure 1: Memory pattern[5].

the refractory scaling parameter to be @ = 9.0, where the
CNN model reveals chaotic wandering states. All the sim-
ulations, we employ the same value of parameters. In order
to avoid transient states, at 1000 steps after control signal
has been injected, we investigate how many time period the
controlled state takes.

The result is given in figure 2. In the red color region of
parameters of 8 and k,, the controlled CNN model shows
different patterns from memory patterns as shown in fig-
ure 1 and we could not find out periodic responses. On
the other hand, in the green color region, the output of the
controlled CNN model is one of memory patterns. The
controllable parameter region is sufficiently large. In other
words, we can control the CNN model without any knowl-
edge about the value of system parameters, a priori. Thus,
the delay feedback control method is practical in stabiliz-
ing the CNN into a certain memory pattern from chaotic
wandering states.

4.2. Relationship between a Stabilized Pattern and a
State of CNN model

We investigate a relationship between a stabilized pat-
tern and a state of the CNN model at the moment when
the control signal was injected. We calculate the Hamming
distance between each memory pattern and the state of the
CNN model, and evaluate how many times the controlled
CNN model converges into the memory pattern whose at-
tractor basins chaotic wandering state passes through at the
moment. We perform the evaluation with the change of in-
jecting time steps of the control signal from 10,000 steps to
20,000 steps.

Results are given in figure 3. As the Hamming distance
becomes larger, the ratio becomes larger, indicating that
the controlled CNN model converges into the memory pat-
tern whose attractor basins chaotic wandering state passes
through at the moment. On the other hand, as the Hamming
distance becomes smaller, the controlled CNN model con-

Figure 2: Parameter dependence of the controlled dynam-
ics on B and k,. Green color represents that the CNN model
is stabilized into a certain memory pattern. Red color rep-
resents that the CNN is in chaotic wandering states.
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Figure 3: Relationship between a stabilized pattern and a state of the CNN model.

verges into a different memory pattern. At the next subsec-
tion, in the case that the converged state is different memory
pattern, we investigate where the controlled CNN model
converges.

4.3. Effect of Pattern Overlap

In order to investigate the problem, we focus on the over-
lap among memory patterns and dependence of converged
patterns on the Hamming distance. In this paper, we evalu-
ate overlap between two patterns of p and ¢ as follows:

1 N
o= :g:(zgf -DEE-1) ®)
i=1

where, {¢7} and {£} represent pth and gth memory pat-
terns, respectively. Results are given in table 1. For the 1st
pattern, the 3rd pattern takes the largest overlap. For the
2nd, the 4th takes the largest overlap.

patterns | 1-2 | 1-3 | 1-4 2-3 24 | 34
overlap | 0.02 | 0.14 | 0.04 | -0.04 | 0.10 | 0.10

Table 1: Overlap among memory patterns.

At last, we investigate the dependence of converged pat-
terns on the Hamming distance for the 2nd pattern. Re-
sults are given in figure 4, where we evaluate how many
times the controlled CNN model converges to each mem-
ory pattern under the situation that the chaotic wandering
state passes through the attractor basins of the 2nd mem-
ory pattern at the moment when the control signal was in-
jected, corresponding to the case of figure 3(b). In the case
of the largest Hamming distance of O - 9 in figure 4(a), the
controlled CNN model almost converges to the same at-
tractor of the 2nd memory pattern, or rarely converges to
the 4th memory pattern with the largest overlap with 2nd
memory pattern. As the Hamming distance decreases, the
ratio that the controlled CNN model converges to the 2nd
memory pattern also decreases. On the other hand, the ra-
tio to 4th pattern, to 3rd pattern, or Ist pattern gradually
increases. The increasing tendency reflects the degree of
the overlap. Thus, the converged pattern depends on the
overlap among memory patterns and where attractor basins
the chaotic wandering state passes through at the moment
when the control signal was injected, that is, is the chaotic
wandering state close to the attractor or distant?
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Figure 4: Dependence of Converged patterns on the Hamming distance for the memory pattern of p = 2.

5. Conclusions

In this paper, we investigate an effect of pattern overlap
in a delay feedback control method for the CNN model.
Results are as follows: As the chaotic wandering state is
close to a certain attractor of the memory pattern, the con-
trolled CNN model converges into the memory pattern. On
the other hand, as the chaotic wandering state is close to
the boundary of the memory pattern, the converged pattern
depends on the overlap among memory patterns. Thus, if
we construct hierarchical memory patterns by controlling
overlaps, the delay feedback control method enable us hi-
erarchical memory pattern search by means of chaotic wan-
dering states.
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