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Abstract— The degree distribution of the encoded sym-
bols plays a crucial role in the design of a LT code — a
type of channel codes. It affects the encoding and decod-
ing cost/complexity as well as the error performance of the
code. In this paper, we apply the shortest “average-path-
length” property of scale-free networks to the construction
of LT codes. In a “scale-free” LT code, the encoded sym-
bols will follow a modified power-law degree distribution.
We will also compare the characteristics and decoding per-
formance of “scale-free” LT codes with traditional LT code
constructed with robust soliton distributions.

1. Introduction

Reliable transmission of data over various channel en-
vironments has been the subject of much research. For
the most part, reliability is realized by using some error
control methods such as appropriate protocols and chan-
nel coding [1, 2]. Protocols relying on positive acknowl-
edgement feedbacks [1], however, perform unsatisfacto-
rily when packets are sent over heavily impaired channels.
Channel coding can provide a stable error performance at
the receiver for a time-invariant channel environment [2].
Yet, in the case of time-varying channel environments, de-
coding failures occur whenever the channel degradation ex-
ceeds the error-correction capability of the code.

Fountain codes [3], including LT codes [4] and Raptor
codes [5], are one kind of rateless channel coding method
that addresses the aforementioned issues. Given a set of K
input (data) symbols, a LT code produces potentially an un-
limited number of encoded symbols. Moreover, the degree
of an encoded symbol, i.e., the number of input symbols
that the encoded symbol is connected to, should follow a
certain distribution in order to optimize the performance
of the code. The receiver, based on the encoded symbols
received, tries to recover all the (input) data symbols by
passing messages among the encoded symbols and the de-
coded symbols. By modifying the degree distribution of the
encoded symbols of LT codes, improvements on the encod-
ing/decoding complexity and error performance are made
[6, 7].

In recent years, properties of complex networks have
been successfully applied to solve engineering problems
such as traffic prediction [8], blackout prediction [9], con-
struction of low-density parity-check codes [10] as well as

modeling of call networks [11]. A complex network con-
sists of nodes and connections. Properties of various kinds
of complex networks including random networks, regu-
lar lattices, small-world networks and scale-free networks
have been extensively studied [12, 13, 14]. It has also been
proven that for the same number of connections, scale-free
networks possess the shortest average-path-length (APL)
among the aforementioned complex networks.

In this paper, inspired by the shortest APL property
of scale-free networks, we propose constructing LT codes
with a modified power-law encoded-symbol degree distri-
bution. We called LT codes with such a property scale-free
LT codes (SF-LT code).

2. LT Codes

LT codes were invented by Luby and were applied to
binary erasure channel (BEC) environments [4]. For all
types of erasure channels, the original data symbols can
be recovered after a sufficient number LT-encoded symbols
have been received. Here, a symbol can represent one bit
or a sequence of bits [3, 4].

Assume that there are K (input) data symbols denoted by
s1, s2, . . . , sK−1, sK . In the encoding process, each encoded
symbol cn (n = 1, 2, . . .) is assigned a degree dn (the num-
ber of connections to the input symbols) ranging from 1 to
K according to a given degree distribution. Moreover, the
degree distribution of the encoded symbols should meet the
following principles [4] — a few encoded symbols should
have high degrees in order to ensure that no input symbols
are left connected; and most encoded symbols should have
low degrees so that the decoding process (to be discussed
below) can get started and keep going. Then dn distinct
input symbols are randomly selected as neighbors of the
encoded symbols. Afterwards, the value of the encoded
symbol is derived by XOR-ing the dn distinct input sym-
bols1. The encoding process eventually defines a bipartite
(Tanner) graph [15] connecting the K input symbols and
the encoded symbols. Figure 1 shows one example with 10
input symbols.

Assuming a BEC channel, the receiver keeps receiving
encoded symbols though some encoded symbols are lost in

1In case each input symbol contains more than one bit, the XOR is
performed in a bit-wise manner.
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Figure 1: Tanner graph of a LT code.

the transmissions. Decoding of the LT code commences as
soon as a sufficient number of symbols are received. The
iterative decoding algorithm is described as follows.

1. Find an encoded symbol c j of degree 12 and denote its
unique neighbor (input data symbol) as si.

2. Copy the value of c j to si, i.e., assign si = c j.

3. Suppose si is connected to l other encoded symbols
in addition to c j. Denote c j,1, c j,2, . . . , c j,l as the other
encoded symbols connected to si. Update c j,k using
c j,k = c j,k + si, for k = 1, 2, . . . , l.

4. Remove input node si and all edges emanating from si

in the Tanner graph. If all the K input symbols have
been recovered, stop the decoding process.

5. Go back to Step 1.

Note that a decoding failure is declared if the input symbols
are not fully recovered when no more encoded symbols are
received.

An ideal decoding behavior can be accomplished in the-
ory when the encoded-symbol degree follows the ideal soli-
ton distribution given by [3, 4]

ρ(d) =

{ 1
K for d = 1

1
d(d−1) for d = 2, 3, . . . ,K. (1)

However, the ideal soliton distribution works poorly in
practice, as at some point in the decoding process there
would be no degree-1 encoded symbols. As a consequence,
the whole decoding process fails.

The robust soliton distribution has solved this problem
by introducing two parameters c and δ. Here, c ∈ (0, 1)
is a free parameter and δ represents the maximum failure
probability of the decoder when N = K + O(

√
K ln2(K/δ))

encoded symbols are received [4]. Using the robust soliton
distribution ensures that the expected number of encoded
symbol with degree 1 at each iteration is large. Conse-
quently, the decoding process can continue and hence the

2If no degree-1 encoded symbol exists, wait until a degree-1 encoded
symbol is received from the channel.
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Figure 2: Complex network formed based on the encoded
symbols of the LT code in Fig. 1

decoding can succeed with a high probability. Finally, the
robust soliton distribution μ(d) is defined as [4]

μ(d) =
ρ(d) + τ(d)∑K

d=1(ρ(d) + τ(d))
∀ d = 1, 2, . . . ,K − 1,K

(2)
where

τ(d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S
K

1
d for d = 1, 2, . . . , �(K/S )� − 1

S
K ln(S/δ) for d = �(K/S )�
0 for d > �(K/S )�.

(3)

3. Proposed Scale-free LT Codes

In the previous section, we have shown that the decod-
ing process of the LT code over a BEC channel is based on
passing “messages” iteratively between the encoded sym-
bols and the input symbols. Since the “messages” originate
from the encoded symbols, we can visualize the message-
passing process by forming a complex network consisting
of the encoded symbols. Representing an encoded sym-
bol by a node in a complex network, we connect two nodes
when the two corresponding encoded symbols share a com-
mon input symbol (i.e., the two encoded symbols are con-
nected to the same input symbol). In Fig. 2, we illustrate
the complex network formed based on the encoded sym-
bols of the LT code in Fig. 1.

When N ≥ K encoded symbols have been received
and with a sufficient number of degree-1 encoded sym-
bols, “messages” from the degree-1 encoded symbols are
first passed to the neighboring nodes in the corresponding
complex network. As a messages is passed, the node pass-
ing the message and its connections can be removed from
the network. This message-passing algorithm continues as
long as there are remaining nodes with degree 1. When
all the nodes and hence the connections are removed, the
input symbols have been decoded successfully (assuming
that each input symbol is connected to at least one of the
encoded symbols received). Otherwise, some input sym-
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bols are yet to be decoded and more encoded symbols need
to be collected.

Referring to Fig. 2, the path length between two nodes
represents the number of iterations required for the “mes-
sage” originated from one node to be passed to other node.
Thus, for a given network size (number of encoded sym-
bols) N, there can be a higher chance of successful decod-
ing if the average path length among the nodes is shorter.
It is well-known that among random networks, regular lat-
tices, small-world networks and scale-free networks, scale-
free networks provide the shortest APL for a fixed number
of nodes and a fixed number of connections [10]. More-
over, scale-free networks provide the smallest number of
connections for a fixed number of nodes and a fixed APL.

With the aforementioned feature in mind, we propose
constructing LT codes with the requirement that networks
formed by the encoded symbols should be scale-free. We
make use of the theorem in [16], which states that if the
degree distribution of one set of nodes in a bipartite graph
follows a power-law distribution, the degree distribution of
the unipartite graph formed by this set of nodes should fol-
low a power-law distribution with the same exponent. Con-
sequently, all we need is to construct a LT code with its en-
coded symbols following a power-law degree distribution.
Then, the complex network formed by the encoded sym-
bols alone will also follow a power-law degree distribution
with the same exponent.

For a pure scale-free distribution, there exist a large num-
ber of nodes with low degrees and a small number of nodes
with large degrees. Here, we slightly modify the pure scale-
free distribution by limiting the fraction of encoded sym-
bols with degree 1. Such a restriction is quite common in
many complex networks. As a result, we define a scale-free
LT code as follows.

Definition 1: We define a scale-free LT (SF-LT) code
as a LT code with its encoded-symbol degree following a
modified power-law distribution. The distribution is further
given by

λ(d) =

{
P1 for d = 1
Ad−γ for d = 2, 3, . . . ,K − 1,K

(4)

where P1 ∈ [0.1, 0.3] determines the fraction of encoded
symbols with degree 1 (called the initial-ripple fraction);
γ is the characteristic exponent; and A is the normalizing
coefficient to ensure

∑K
d=1 λ(d) = 1.

4. Results and Discussions

We construct SF-LT codes for input symbol length K =
1000 based on the degree distribution in (4). We use three
different sets of parameters — (i) P1 = 0.1 and γ = 1.9;
(ii) P1 = 0.1 and γ = 2.0; (iii) P1 = 0.2 and γ = 1.9 —
for constructing the SF-LT codes. The average number of
degrees for each encoded symbol, denoted by d̄, is calcu-
lated by substituting (4) into d̄ =

∑K
d=1 dλ(d) and is listed in

Table 1. Moreover, for every input-symbol set, we generate
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Figure 3: Probability of successful decoding versus the
number of encoded symbols sent for robust LT code and
SF-LT codes (P1 = 0.1 and γ = 1.9; P1 = 0.1 and γ = 2.0;
P1 = 0.2 and γ = 1.9). K = 1000.

the corresponding SF-LT codes with 2K = 2000 encoded
symbols based on the aforementioned parameter sets. This
is repeated 1000 times for every set of parameters. Then,
we measure the average number of XOR operations x̄ re-
quired to encode each encoded symbol. In addition, the
encoded symbols are sent sequentially to the receiver (with
no erasures) until the receiver can recover the input sym-
bols correctly. We then record the average number of XOR
operationsΨ used to recover the input symbols. The results
in Table 1 show that among the three sets of parameters, the
one using P1 = 0.1 and γ = 2.0 to construct SF-LT codes
possesses the least complexity in terms of average num-
ber of XOR operations to encoded one symbol and average
number of XOR operations to recover the input symbols.

We also construct LT codes based on the robust soliton
degree distribution given in (2) for comparison purpose.
We arbitrarily set δ = 0.02 and evaluate the performance
of the code for different values of c while K is fixed at
1000. We find that using c = 0.12 gives the best overall
probability of successful decoding. (Details not shown due
to space limitation.) Thus, we use the parameters δ = 0.02
and c = 0.12 in constructing robust LT codes. In Table 1,
we show the characteristics of the robust LT codes con-
structed.

Next, we compare the performance of the our proposed
SF-LT codes with the robust LT code. 2000 different sets of
encoded symbols are formed according to the correspond-
ing encoded-symbol degree distribution. These encoded
symbols are subsequently sent to the receiver. Figure 3
shows the results for the perfect channel, i.e., no symbols
are erased. The results indicate that the SF-LT codes al-
ways give a higher probability of successful decoding for
a given number of encoded symbols sent. Further, it is
clearly seen that the SF-LT code with P1 = 0.1 and γ = 2.0
significantly outperforms the robust LT code. The results
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Table 1: Characteristics of the Codes Constructed.

Average degree of an Average no. of XOR operations Average no. of XOR operations
Code Parameters encoded symbol d̄ to encode one symbol x̄ to recover the input symbols Ψ

(K = 1000) (K = 1000) (K = 1000)

LT code (robust soliton) c = 0.12, δ = 0.12 9.07 8.023 9880

SF-LT code
P1 = 0.1, γ = 1.9 11.67 10.546 12691

P1 = 0.1, γ = 2.0 9.26 8.204 9475

P1 = 0.2, γ = 1.9 10.392 9.376 11183
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Figure 4: Probability of successful decoding versus the
number of encoded symbols sent for robust LT code and
SF-LT codes (P1 = 0.1 and γ = 2.0). Erasure probability
Pera = 0.1 and 0.2, K = 1000.

in Table 1 also indicate these two codes require similar en-
coding and decoding complexities.

Finally, we compare the performance of the SF-LT code
(with P1 = 0.1 and γ = 2.0) with that of the robust LT code
over a BEC environment. Figure 4 shows that the SF-LT
code always outperform the robust code when the erasure
probability Pera = 0.1 and 0.2.

5. Conclusion

In this paper, we propose a novel type of LT code —
scale-free LT (SF-LT) codes — in which the encoded sym-
bols obeys a modified power-law degree distribution. The
results show that the encoding and decoding complexities
of SF-LT codes and LT codes are very similar. Yet, for a
fixed number of encoded symbols sent, the SF-LT codes
can provide better decoding performance compared with
the robust LT codes under both ideal channel and BEC con-
ditions.
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