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Abstract—A coupled-oscillator model for the central
pattern generator proposed by Golubitsky et al. [1], which
can exhibit various synchronized states that correspond to
typical quadruped gaits, is studied. The stability and sensi-
tivity of the synchronized states are quantified by the Lya-
punov exponents and the associated Lyapunov vectors. It is
shown that the stability of the synchronized state depends
on the gaits, and the Lyapunov vectors reflect the symmetry
of the gaits. The asymptotic phase response of the model to
external perturbations is characterized by the adjoint Lya-
punov vector associated with the zero Lyapunov exponent.
Phase response properties of the gait measured by direct
numerical stimulations reasonably agree with the adjoint
Lyapunov vectors.

1. Introduction

It is considered that the gaits (walking patterns) of ani-
mals and insects are generated by the central pattern gen-
erators (CPGs) in their neural systems [2]. Although phys-
iological details of the CPG are still under investigation,
various mathematical models for the CPG have been de-
veloped [1]. In particular, networks of mutually interacting
nonlinear oscillators, which can exhibit a variety of stable
rhythmic patterns, have been studied as prototypical mod-
els for CPGs. Such mathematical models are also applied
in controlling the locomotion of artificial robots with mul-
tiple legs [3].

In this study, we analyze a simple coupled-oscillator
model for the CPG introduced by Golubitsky et al. [1],
which consists of symmetrically coupled identical oscil-
lators and is capable of reproducing several representa-
tive gaits observed in real animals. Reflecting its symmet-
ric coupling networks, this model exhibits symmetric syn-
chronized states. Namely, the oscillators settle in steady
synchronized states with particular phase relations with
the other oscillators, which can be interpreted as rhythmic
gaits.

We characterize the stability and sensitivity of the syn-
chronized states by the Lyapunov exponents and the asso-
ciated Lyapunov vectors. Using recently developed numer-
ical methods [4, 5], we calculate the Lyapunov exponents,
covariant or characteristic Lyapunov vectors (simply called
Lyapunov vectors in the following), and the adjoint Lya-

punov vectors for several representative gaits and analyze
their properties.
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Figure 1: Coupled-oscillator model for generating
quadruped gaits proposed by Golubitsky et al. [1]. Vari-
ables x1–x4 of the oscillators 1–4 correspond to the 4 legs.

2. Model

We consider a coupled-oscillator model for the CPG in-
troduced by Golubitsky et al. [1], which consists of 4n
identical oscillators for 2n-legged animals. Each oscillator
is described by the FitzHugh-Nagumo neuron model,

ẋ(t) = c
(
x + y − 1

3
x3

)
≡ f1(x, y),

ẏ(t) = −1
c

(x − a + by) ≡ f2(x, y), (1)

where the variable x corresponds to the membrane potential
of the neuron and y represents its activation level. Denoting
the i-th oscillator state as (xi, yi) where i = 1, 2, ..., 4n, the
CPG model is given by the following coupled dynamical
equations:

ẋi(t) = f1(x, y) + α(xi−2 − xi) + γ(xi+ε − xi),
ẏi(t) = f2(x, y) + β(yi−2 − yi) + δ(yi+ε − yi), (2)
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where

ε = 1 (when i is odd), −1 (when i is even), (3)

and the oscillator index is considered in modulo 4n, i.e.,
i − 2 = 4n + i − 2 for i = 1, 2.

We consider the case with n = 2, namely, the gaits of
quadrupeds with 4 legs. See Fig. 1 for a schematic of the
model. The variables x1, x2, x3, and x4 of the oscillators
1–4 are interpreted as the movement of the left-rear foot,
right-rear foot, left-front foot, and right-front foot, respec-
tively. The parameters a, b, and c specify the dynamics of
individual oscillator and are fixed at a = 0.02, b = 0.2,
and c = 0.44. The parameters α, β, γ, and δ specify mu-
tual coupling between the oscillators. As shown in [1], by
setting these coupling parameters appropriately, this model
can exhibit synchronized states corresponding to the fol-
lowing gaits: pace, bound, trot, jump, and walk. See [1]
for the details.

In this article, we focus only on the trot and walk gaits.
In the trot gait, the 8 oscillators form 2 clusters with x1 =

x4 = x5 = x8 and x2 = x3 = x6 = x7 (and similarly for
y). Thus, the left-rear foot and the right-front foot form
a pair, and the left-front foot and the right-rear foot form
another pair. Similarly, in the walk gait, the 8 oscillators
form 4 clusters with x1 = x6, x2 = x5, x3 = x8, and x4 = x7
(and similarly for y). See Table 1 for the parameter values
corresponding to various gaits, and Fig. 2 for the dynamics
of the oscillators 1–4 in the trot and walk states.

Gait α β γ δ

Pace 0.025 0.02 -0.01 -0.012
Trot -0.02 -0.002 -0.025 0.015
Bound -0.01 -0.0102 0.025 0.02
Jump -0.02 0.01 0.025 0.015
Walk -0.01 0.0102 -0.025 0.02

Table 1: Parameter values for the trot and walk gaits. Taken
from Golubitsky et al. [1].

3. Lyapunov exponents and vectors

The Lyapunov exponents quantify linear growth rates of
small variations from a given trajectory [4, 5, 6]. In m-
dimensional dynamical systems, there exist m independent
directions and therefore m Lyapunov exponents. The Lya-
punov vectors give the directions associated with the Lya-
punov exponents. When the system exhibits periodic dy-
namics, these quantities are essentially equivalent to the
Floquet exponents and the associated Floquet vectors of the
periodic orbit [6].

We consider a m-dimensional continuous dynamical sys-
tem described by

Ẋ(t) = G(X). (4)
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Figure 2: Examples of the oscillator dynamics. Trot (top)
and walk (bottom).

For the present CPG model, the state vector is given by

X = (x1, y1, · · · , x8, y8) (5)

and the dimension of the model is m = 16. The linearized
dynamics of the infinitesimal variation u(t) from the trajec-
tory X(t) is given by

u̇(t) = J(X)u (6)

where J is a Jacobian matrix of G(X). The fundamental
matrix M(t), whose columns are given by linearly indepen-
dent solutions of Eq. (6), obeys

Ṁ(t) = J(X)M, (7)

and the solution to Eq. (6) can be expressed as

u(t2) = F(t1, t2)u(t1), (8)

where the propagator is given by [5]

F(t1, t2) = M(t2)M(t1)−1. (9)

The Lyapunov exponents λ1 ≥ λ2 ≥ · · · ≥ λm and the
associated Lyapunov vectors v1(t),v2(t), · · · ,vn(t) satisfy

lim
t→±∞

1
t

ln ‖F(t1, t1 + t)u(t1)‖ = ±λ j (10)

if u(t1) ‖ v j(t1) for any t1 ( j = 1, 2, ...,m). Thus, if a small
variation u(t1) that is parallel to the Lyapunov vector v j(t1)
is given to the state point X(t1) at t = t1, it grows exponen-
tially with a rate λ j as

‖F(t1, t1 + t)u(t1)‖ ∼ eλ jt. (11)
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Following Kuptsov and Parlitz [5], an adjoint propagator

G(t1, t2) = F(t1, t2)−T (12)

can also be introduced, where −T denotes matrix in-
version and transpose. The adjoint Lyapunov vectors
w1(t),w2(t), · · · ,wn(t) then satisfy

lim
t→±∞

1
t

ln ‖G(t1, t1 + t)u(t1)‖ = ∓λ j (13)

if u(t1) ‖ w j(t1) for any t1 ( j = 1, 2, ...,m).
The Lyapunov and adjoint vectors {v1(t), · · · ,vm(t)} and
{w1(t), · · · ,wm(t)} form a biorthogonal basis and satisfy

vi(t) ·w j(t) = δi j (14)

for i, j = 1, 2, ...,m. These adjoint Lyapunov vectors can be
used to project the perturbations onto the direction of the
corresponding Lyapunov vectors, and therefore they char-
acterize the “sensitivity” of the limit-cycle orbit to given
perturbations.
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Figure 3: Lyapunov exponents for each gait in Table 1.

4. Results

We use the numerical algorithm proposed by Kuptsov
and Parlitz [5] to calculate the Lyapunov exponents and
vectors. Figure 3 shows the Lyapunov exponents for the
gaits shown in Table 1. The first Lyapunov exponent λ1
vanishes for all gaits and all other exponents are negative,
i.e., all gaits are linearly stable. The values of the sec-
ond and other Lyapunov exponents differ from gait to gait,
which shows that the stability of the synchronized state de-
pends on the gait. It can also be seen that the Lyapunov
exponents decrease with i stepwisely, indicating that some
of the exponents are degenerate. This reflects the symmetry
in the synchronized dynamics of the oscillators.

We first focus on the second and other Lyapunov vec-
tors v2,v3, · · · ,vn. These vectors correspond to the “am-
plitude deviations” away from the synchronized state and

perturbations given in these directions decay exponentially.
The Lyapunov vectors associated with the negative Lya-
punov exponents with the smallest magnitude characterize
the perturbations that decay most slowly, i.e., perturbations
that affect the stability of the gait most strongly. Figure 4
shows the Lyapunov vectors v2(t) and v3(t) for the trot gait
(a, b) and walk gait (c, d). As can be seen from Fig. 1,
the 2nd and 3rd Lyapunov exponents are degenerate, i.e.,
λ2 = λ3, except for the pace gait. Therefore, the corre-
sponding Lyapunov vectors v2 and v3 are not uniquely de-
termined, and external perturbations in the 2-dimensional
space spanned by v2 and v3 decay with the same rate.
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Figure 4: Lyapunov vectors v2 and v3 associated with the
Lyapunov exponents λ2 = λ3, plotted as functions of the
oscillation phase. (a) v2 for trot, (b) v3 for trot, (c) v2 for
walk, and (d) v3 for walk.

We now focus on the Lyapunov vector v1 associated with
λ1 = 0, which is tangent to the limit-cycle orbit. External
perturbations given in this direction do not grow or decay
exponentially. Therefore, this direction is neutrally stable
and corresponds to the “phase” direction of the synchro-
nized state, i.e., the collective limit-cycle oscillation of the
whole system. Figure 5 shows the Lyapunov vectors v1(t)
and the adjoint Lyapunov vectors w1(t) for the trot gait.
Similarly, Fig. 6 shows the Lyapunov vectors v1(t) and the
adjoint Lyapunov vectors w1(t) for the walk gait.

The effect of external perturbations that are parallel to
v1(t) remains as a constant phase shift in the collective os-
cillation of the system. More explicitly, if the system is
kicked by an instantaneous perturbation p at time t, the
phase shift is proportional to the projection of p onto the
direction of v1(t), i.e., the product of the adjoint Lyapunov
vector w1(t) and p [7]. Figure 7 compares the adjoint Lya-
punov vector w1(t) and the phase response of the gait mea-
sured by directly perturbing each of the x1-x4 variables with
an impulse of intensity 0.02 for the walk gait. The results
agree reasonably when appropriately rescaled, indicating
that the adjoint Lyapunov vector correctly characterizes the
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phase response properties of the synchronized state.
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Figure 5: Lyapunov vectors v1 (top) and the adjoint Lya-
punov vectors w1 (bottom) associated with λ1 = 0 for the
trot gait. Only x components are shown for one period of
oscillation.
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Figure 6: Lyapunov vectors v1 (top) and the adjoint Lya-
punov vectors w1 (bottom) associated with λ1 = 0 for the
walk gait. Only x components are shown for one period of
oscillation.
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Figure 7: Comparison of the adjoint Lyapunov vector w1
and the phase response function obtained by direct numer-
ical simulations. The axes are appropriately rescaled. Only
x1,2,3,4 components are shown.

5. Summary

We have characterized the stability and sensitivity of the
synchronized states in a coupled-oscillator model for gait
generation using the Lyapunov and adjoint Lyapunov vec-
tors. More details of the Lyapunov vectors, in particular
symmetry properties, will be discussed at the conference.
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