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Hiroshi UMEO†, Jean-Baptiste YUNÈS††, Naoki KAMIKAWA†, and Juntarou KURASHIKI†

† Univ. of Osaka Electro-Communication,
Faculty of Information Science and Technology,

Neyagawa-shi, Hatsu-cho, 18-8, Osaka, 572-8530, Japan
E-mail: {umeo, kamikawa, kurashiki}@cyt.osakac.ac.jp

†† LIAFA - Universite Paris 7 Denis Diderot,
175, rue du chevaleret, 75013 Paris - France,

E-mail: Jean-Baptiste.Yunes@liafa.jussieu.fr

Abstract—The synchronization in cellular automata
has been known as a firing squad synchronization prob-
lem since its development, in which it was originally pro-
posed by J. Myhill in Moore [1964] to synchronize all or
some parts of self-reproducing cellular automata. The fir-
ing squad synchronization problem has been studied exten-
sively for more than 40 years [1-22]. In the present article,
we propose two six-state firing squad synchronization full
protocols for rings, which are the smallest ones known at
present for rings. In addition, we present a family of 4-state
partial protocols that can synchronize any one-dimensional
rings of length n = 2k for any positive integer k. The num-
ber four is the smallest one in the class of synchronization
protocols proposed so far. We also study state change com-
plexities for those protocols.

1. Introduction

Cellular automata are considered to be a nice model of
complex systems in which an infinite one-dimensional array
of finite state machines (cells) updates itself in synchronous
manner according to a uniform local rule. We study a
synchronization problem that gives a finite-state protocol
for synchronizing a large scale of cellular automata. The
synchronization in cellular automata has been known as a
firing squad synchronization problem (FSSP) since its de-
velopment, in which it was originally proposed by J. My-
hill in Moore [1964] to synchronize all or some parts of
self-reproducing cellular automata. The FSSP has been
studied extensively for more than 40 years [1-22]. The
optimum-time (i.e., (2n − 2)-step ) synchronization algo-
rithm for one-dimensional array of length n was devised
first by Goto [1962]. The algorithm needed many thou-
sands of internal states for its realization. Afterwards,
Waksman [1966], Balzer [1967], Gerken [1987] and Mazoyer
[1987] developed an optimum-time algorithm and reduced
the number of states realizing the algorithm, each with 16,
8, 7 and 6 states. On the other hand, Balzer [1967], Sanders
[1994] and Berthiaume et al. [2004] studied the state lower
bounds for realizing synchronization and have shown that
there exists no four-state synchronization algorithm. Thus,
an existence or non-existence of five-state firing squad syn-
chronization protocol has been a longstanding open prob-
lem. One has to note that any solution in the original prob-

lem is to synchronize any array of length greater than two.
We call it full solution. Umeo and Yanagihara [2007] initi-
ated an investigation on the FSSP solutions that can syn-
chronize an infinite set of arrays, but not all, and presented
a five-state 3n + O(1) step algorithm that can synchronize
any one-dimensional cellular array of length n = 2k for
any positive integer k in 3n − 3 steps. Recently, Yunès
[2008] and Umeo, Yunès, and Kamikawa [2008] developed
4-state protocols based on Wolfram’s rule 60 and 150. We
call such protocol as partial solution. Umeo, Kamikawa,
and Yunès [2008] also have given an answer partially to the
problem by proposing a family of smallest four-state firing
squad synchronization protocols that can synchronize any
one-dimensional ring cellular array of length n = 2k for
any positive integer k. The number four is the smallest
one in states required in the class of synchronization pro-
tocols proposed so far. In the present article, we propose
several six-state firing squad synchronization full protocols
for rings, which are the smallest ones known at present for
rings. In addition, we present a family of 4-state partial
protocols that can synchronize any one-dimensional ring
cellular arrays of length n = 2k for any positive integer k.
We also study state change complexities for those proto-
cols.
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Figure 1: A one-dimensional ring cellular automaton.

2. Firing Squad Synchronization Problem on
Rings

2.1. Firing Squad Synchronization Problem

Figure 1 shows a finite one-dimensional ring cellular ar-
ray consisting of n cells. Each cell is an identical finite-state
automaton. The array operates in lock-step mode in such
a way that the next state of each cell is determined by both
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its own present state and the present states of its left and
right neighbors. All cells (soldiers), except one cell (gen-
eral), are initially in the quiescent state at time t = 0 with
the property that the next state of a quiescent cell with
quiescent neighbors is the quiescent state again. At time
t = 0, the one cell, for example C1, is in the fire-when-ready
state, which is the initiation signal for the array. The firing
squad synchronization problem (FSSP) is to determine a
description (state set and next-state function) for cells that
ensures all cells enter the fire state at exactly the same time
and for the first time. The set of states and the next-state
function must be independent of n.

2.2. Complexity Measures in FSSP

2.2.1. Time Complexity

Any solution to the firing squad synchronization prob-
lem for rings can be shown to require n-steps for synchro-
nizing n cells, since signals on the array can propagate no
faster than one cell per step, and the time from the gen-
eral’s instruction until the synchronization must be at least
n. It has been shown by Berthiaume et al. [2004] that there
exists no algorithm that can synchronize any ring of length
n in less than n steps.

Theorem 1Berthiaume, Bittner, Perkovic, Settle, and Simon [2004]

The minimum time in which the firing squad synchroniza-
tion could occur is no earlier than n steps for any ring of
length n.

2.2.2. Number of States

The following three distinct states: the quiescent state,
the general state, and the firing state, are required in or-
der to define any cellular automaton that can solve the
FSSP. Balzer [1967] implemented a search strategy in or-
der to prove that there exists no four-state full solution. He
showed that no four-state optimum-time full solution ex-
ists. Sanders [1994] studied a similar problem on a parallel
computer and gave a proof based on a computer simula-
tion for the non-existence of four-state full solution. The
question that remains is: “What is the minimum number
of states for an optimum-time solution of the problem?”At
present, that number is five or six. Umeo and Yanagihara
[2007], Yunès [2008], and Umeo, Yunès, and Kamikawa
[2008] gives some 4- and 5-state partial solutions that can
synchronize infinite cells, but not all.

Theorem 2Balzer[1967], Sanders[1994] There is no four-state
full solution that can synchronize n cells.

Berthiaume, Bittner, Perković, Settle and Simon [2004]
considered the state lower bound on ring-connected cellu-
lar automata. It is shown that there exists no three-state
solution and no four-state symmetric solution for rings.

Theorem 3Berthiaume et al.[2004] There is no four-state sym-
metric optimum-time full solution for ring cellular au-
tomata.

Theorem 4Umeo, Yunes, and Kamikawa [2008], Yunes [2008]

There exist 4-state partial solutions to the firing squad
synchronization problem for the rings.

2.2.3. State-Change Complexity

Vollmar [1982] introduced a state-change complexity in
order to measure the efficiency of cellular algorithms and
showed that Ω(n log n) state-changes are required for the
synchronization of n cells in (2n − 2) steps.

Theorem 5Vollmar [1982] Ω(n log n) state-change is neces-
sary for synchronizing n cells in n steps.

3. Ring Solutions

3.1. Optimum-Time 8-State Full Solution

Berthiaume, Bittner, Perković, Settle and Simon [2004]
proposed an 8-state full solution operating exactly in
optimum-step.

Theorem 6Berthiaume, Bittner, Perkovic, Settle, and Simon [2004]

There exists an 8-state solution that can synchronize any
ring of length n exactly in optimum n-steps.

3.2. Non-Optimum-Time 6-State Full Solu-
tions
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Figure 2: A time-space diagram for finite-width
thread-like non-optimum-step firing squad synchro-
nization algorithm.

Figure 2 shows a time-space diagram for the well-known
non-optimum-time firing squad synchronization algorithm
for rings. The synchronization process can be viewed as a
typical divide-and-conquer strategy that operates in par-
allel in the cellular space. An initial ”General” G, located
at an arbitrary cell of the array of size n, generates two
special signals, referred to as a-signal and b-signal, which
propagate in the right and left directions at speed of 1/1
(i.e., 1 cell per unit step) and 1/3 (1 cell per three steps),
respectively. The a-signal collides with each other at time
t = n/2, reflects there immediately, and then continues to
move at the same speed in the left and right directions.
The reflected signal is referred to as r-signal. The b- and
r-signals meet at a quarter cell(s), depending on the parity
of n. In the case that n is odd, the cells C�n/4� and C�3n/4�
become a General at time t = 3�n/4�−2. The new Gener-
als work for synchronizing both its left and right halves of
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Figure 3: A state transition table for the six-state sym-
metrical full protocol.

the cellular space. Note that the General is shared by the
two halves. In the case that n is even, two cells C�n/4� and
C�n/4�+1 become the next Generals at time t = 3�n/4�.
Each General works for synchronizing its left and right
quarters of the cellular space, respectively. Thus at time
t = tG1

tG1 =

�
3�n/4� − 2 n: odd

3�n/4� n: even,
(1)

the array knows its quarter point(s) and generates one or
two new General (s) G1 at the quarter cell(s). The new
General (s) G1 generates the same 1/1- and 1/3-speed sig-
nals in both left and right directions and repeats the same
procedures as above. Thus, the original synchronization
problem of size n is divided into four sub-problems of size
�n/4�. In this way, the original array is split into equal
two, four, eight, ..., subspaces synchronously. In the last,
the original problem of size n can be split into small sub-
problems of size 2. Based on the time-space diagram shown
in Fig. 2, we provide two 6-state full protocols. Figure 3
illustrates the symmetrical transition table and snapshots
of the algorithm are given in Fig. 4. The 6-state algorithm
can synchronize any ring of length n in 3n/2 + O(log n)
steps. The state-change-complexity is O(n2). The other
6-state algorithm has O(n log n)-state-change complexity.
It can synchronize any ring of length n in 3n/2 + O(log n)
steps. Figure 5 illustrates the transition table and snap-
shots of the synchronization processes are given in Fig. 6.
A proof for the correctness of those algorithms is omitted.
We have:

Theorem 7 There exists six-state full solutions that can
synchronize any ring of length n in 3n/2+O(logn) steps.

3.3. Optimum-Time 4-State Partial Solution

We present four optimum-time partial solutions 1, 2, 3,
and 4 each operating in exactly n steps for any ring of
length n = 2k, k ≥ 1, where k is any positive integer. See
Umeo, Kamikawa and Yunès [2009] for details. Figure 7
shows the transition rules and snapshots on 16 cells for
Solution 1. It is noted that both of the states G and A
can be an initial general state in each solution without
introducing any additional transition rules. Let Ti,G(n),
Ti,A(n) be time complexity of Solution i for synchronizing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q P Q Q Q Q Q Q Q Q
1 Q Q Q Q Q Q P Z P Q Q Q Q Q Q Q
2 Q Q Q Q Q P R Z R P Q Q Q Q Q Q
3 Q Q Q Q P R R Q R R P Q Q Q Q Q
4 Q Q Q P R M R Q R M R P Q Q Q Q
5 Q Q P R M R Z Q Z R M R P Q Q Q
6 Q P R M R R Q Q Q R R M R P Q Q
7 P R M R M R Q Q Q R M R M R P Q
8 R M R M R Z Q Q Q Z R M R M R P
9 M R M R R Q Q Q Q Q R R M R M Z

10 Z M R M R Q Q Q Q Q R M R M Z Q
11 Q Z M R Z Q Q Q Q Q Z R M Z Q Q
12 Q Q Z R Q Q Q Q Q Q Q R Z Q Q Q
13 Q Q Q P Q Q Q Q Q Q Q P Q Q Q Q
14 Q Q P Z P Q Q Q Q Q P Z P Q Q Q
15 Q P R Z R P Q Q Q P R Z R P Q Q
16 P R R Q R R P Q P R R Q R R P Q
17 R M R Q R M R P R M R Q R M R P
18 M R Z Q Z R M Z M R Z Q Z R M Z
19 Z R Q Q Q R Z Q Z R Q Q Q R Z Q
20 Q P Q Q Q P Q Q Q P Q Q Q P Q Q
21 P Z P Q P Z P Q P Z P Q P Z P Q
22 R Z R P R Z R P R Z R P R Z R P
23 R Q R Z R Q R Z R Q R Z R Q R Z
24 P Q P Q P Q P Q P Q P Q P Q P Q
25 Z P Z P Z P Z P Z P Z P Z P Z P
26 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
27 F F F F F F F F F F F F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 Q Q Q Q Q Q Q Q P Q Q Q Q Q Q Q Q
1 Q Q Q Q Q Q Q P Z P Q Q Q Q Q Q Q
2 Q Q Q Q Q Q P R Z R P Q Q Q Q Q Q
3 Q Q Q Q Q P R R Q R R P Q Q Q Q Q
4 Q Q Q Q P R M R Q R M R P Q Q Q Q
5 Q Q Q P R M R Z Q Z R M R P Q Q Q
6 Q Q P R M R R Q Q Q R R M R P Q Q
7 Q P R M R M R Q Q Q R M R M R P Q
8 P R M R M R Z Q Q Q Z R M R M R P
9 Z M R M R R Q Q Q Q Q R R M R M Z

10 Q Z M R M R Q Q Q Q Q R M R M Z Q
11 Q Q Z M R Z Q Q Q Q Q Z R M Z Q Q
12 Q Q Q Z R Q Q Q Q Q Q Q R Z Q Q Q
13 Q Q Q Q P Q Q Q Q Q Q Q P Q Q Q Q
14 Q Q Q P Z P Q Q Q Q Q P Z P Q Q Q
15 Q Q P R Z R P Q Q Q P R Z R P Q Q
16 Q P R R Q R R P Q P R R Q R R P Q
17 P R M R Q R M R P R M R Q R M R P
18 Z M R Z Q Z R M Z M R Z Q Z R M Z
19 Q Z R Q Q Q R Z Q Z R Q Q Q R Z Q
20 Q Q P Q Q Q P Q Q Q P Q Q Q P Q Q
21 Q P Z P Q P Z P Q P Z P Q P Z P Q
22 P R Z R P R Z R P R Z R P R Z R P
23 Z R Q R Z R Q R Z R Q R Z R Q R Z
24 Q P Q P Q P Q P Q P Q P Q P Q P Q
25 P Z P Z P Z P Z P Z P Z P Z P Z P
26 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
27 F F F F F F F F F F F F F F F F F

Figure 4: Snapshots for the 6-state symmetrical firing
squad synchronization algorithm on 16 and 17 cells.
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d
Right State

Q Z A C d

Left State

Q Q A Q C

Z Q Q C Q

A d C Z

C Q Z Q Q

d d Q Q

Figure 5: A state transition table for the six-state
thread-like algorithm.

a ring CA of length n with an initial general in state G, A,
respectively. We get the following theorem.

Theorem 8 For any i such that 1 ≤ i ≤ 4, Ti,G(n) =
Ti,A(n) = n, where n = 2k, k ≥ 1.

4. Conclusions

We have presented two six-state full FSSP protocols
for rings, which are the smallest non-optimum-time ones
known at present for rings. One solution has O(n2) and
the other has optimum Ω(n log n) state-change complexity,
respectively.
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