
An evolving network based on a threshold graph and
estimation of its evolution process

Yutaka Shimada† and Tohru Ikeguchi†‡

†Graduate School of Science and Engineering, Saitama University
255 Shimoohkubo, Sakura-ku, Saitama-shi, Saitama, 338-8570 Japan

‡Saitama University Brain Science Institute
Email: sima@nls.ics.saitama-u.ac.jp, tohru@mail.saitama-u.ac.jp

Abstract— In this paper, we propose a simple evolv-
ing network model based on a threshold graph. In the pro-
posed network model, a node has its own state, and connec-
tions to other nodes are determined by the state. Because
the states of nodes evolve with time in our network model,
the connections between nodes also change with time. We
also propose a method for reconstructing the evolution pro-
cesses of the states of nodes in the networks only from the
information of the structures of networks at each time. Nu-
merical experiments clearly show that the proposed method
can reconstruct the evolution dynamics.

1. Introduction

In the real world, various systems are described as a net-
work, for example human relationships, synaptic connec-
tions in neural systems, the world wide web [2], ecolog-
ical food webs [1], and so on. These real networks gen-
erally consist of a number of nodes which are intricately
connected with each other. Even though the real networks
have such complex structures, recent researches on these
real complex networks have clarified that underlying com-
mon structures exist, such as a small-world structure and
a scale-free structure. To analyze real complex networks,
several network models that realize these structural features
have been proposed [4, 5].

On the other hand, in recent years, temporal evolution of
networks is focused [6, 7]. In Ref. [6], temporal changes
of e-mail networks were discussed: sent and received e-
mails were observed for about four months and e-mail net-
works were analyzed. It was then reported that the e-mail
networks keep a power-law degree distribution each day,
but hub nodes dynamically change from day to day. As in
the case of the e-mail network, many real networks might
evolve over time, changing their structures. However, the
conventional network models cannot explain such dynam-
ical features of the real complex networks because those
models mainly focus on the static features of real networks
at a given time.

In this paper, we first propose a simple evolving network
model in which structural features of networks, such as de-
gree distribution, are kept through time but connections of
nodes dynamically change over time. Our network model

is based on a threshold graph in which nodes have their
own weights and connections between the nodes are de-
termined by the weights [8, 9, 10]. Although the thresh-
old graph is a simple network model, it can realize vari-
ous types of complex networks. In our proposed network
model, nodes have their own states instead of the weight
in the threshold graph, and the states are evolved by intrin-
sic dynamics of the nodes over time. The connections be-
tween nodes are decided by the following rule: if the states
between two nodes are “close”, they are connected, other-
wise disconnected. Because the states evolve with time and
existence of connections depends on “closeness” between
the states of the nodes, generated networks always change
dynamically through time. Our model assumes the evolu-
tion of networks might obey underlying, usually unknown,
dynamics. We show that our assumption is valid from the
viewpoint of the stationarity of structural features of net-
works through time and dynamical changes of degree of
nodes.

In the second part of the paper, we propose a method
for reconstructing temporal changes of the states of nodes
only from adjacency relations between the nodes at each
time. In numerical simulations, we show that our method is
effective for uncovering the hidden rule and reconstructing
the evolution processes from the network structures.

2. Evolving network model

In our model, the ith node v(i) (i = 1, . . . , n) in a net-
work has its own state xi(t) ∈ Rm, where xi(t) is an m-
dimensional state vector at time t. Let us assume that the
state of the ith node xi(t) is evolved by the following dy-
namics:

xi(t + 1) = Fi(xi(t)), (1)

where Fi is an m-dimensional map for the ith node. For
the sake of simplicity, in the following, we only consider
1-dimensional discrete time dynamical systems, namely
m = 1. We assume also that all nodes obey the same dy-
namical rule. However, the method described below can be
applied to higher dimensional systems and continuous time
dynamical systems.

At time t (t = 1, . . . , T ), two nodes v(i) and v(j) are
connected if the Euclidean norm dij(t) = |xi(t) − xj(t)|
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is smaller than a threshold θ, but if not, v(i) and v(j) are
disconnected. Because whether two nodes are connected
or not depends on their states, the connections dynamically
change as the states evolve. Figure 1 is a schematic diagram
of the proposed network model. At time t, the nodes v(i)
and v(k) are connected because dik(t) < θ, while v(i) and
v(j) are not connected because dij(t) > θ (the left side
of Fig. 1). However, at time t + 1, the states of nodes are
updated by F and thereby the connections change (the right
side of Fig. 1). Thus, a network changes its structure with
time because the states of the nodes change with time.

・・・
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Figure 1: The proposed network model. The network
structures change with time t becasuse states of the nodes
change with time.

From Ref. [8], the degree distribution p(k) of the thresh-
old graph is described by

p(k) = ρ(w)
dw

dk
, (2)

where k is the degree, w is the weights of nodes, and ρ(w)
is the distribution of the weight. Equation (2) indicates that
the degree distribution of networks depends only on the dis-
tribution of weights ρ(w). In our model, if the dynamical
rules of all nodes are stationary, the degree distribution is
invariant even if the states of the nodes are evolved with
time. Thus, in the case, the degree distribution is kept even
if the states are updated over time. However, the degree of
each node changes with time.

3. Method for reconstructing evolution process

In the following sections, under the assumption that
some dynamical rules exist in the evolution of networks,
we propose a method for reconstructing xi(t), time series
of the state of the ith node v(i), only from network struc-
tures. We assume the following situations: we only have
networks, namely adjacency matrices, for any time t and
then try to estimate the unknown state of v(i), xi(t), only
from the adjacency matrices.

From a network at time t (1 ≤ t ≤ T ), we reconstruct
the time series of the states of the ith node xi(t). To re-
construct xi(t), we applied the method proposed by Hirata
et al. [11] which reproduces an original time series only

from its recurrence plot [13, 14]. The recurrence plot is an
image generated from an attractor of a nonlinear dynamical
system. From Ref. [11], once the recurrence plot is given,
the unknown distances dij between any two points on the
attractor can be estimated. Then, by the classical multidi-
mensional scaling (CMDS) [12], coordinate values of the
points are reconstructed so that the estimated distance re-
lations are satisfied. In our method, because the adjacency
matrix of a network corresponds to the recurrence plot, we
can directly apply the method in Ref. [11] to the adjacency
matrix and can obtain the states of nodes only from the ad-
jacency matrix.

To reconstruct a state time series xi(t), firstly distances
between any two nodes are estimated. Let D(t) = {dij(t)}
be the distance matrix between two nodes v(i) and v(j) in
a network at time t. If two nodes v(i) and v(j) are adjacent
each other, the distance dij(t) is estimated by the following
equation [11]:

dij(t) = 1 −
|Gi(t) ∩ Gi(t)|

|Gi(t) ∪ Gi(t)|
, (3)

where Gi(t) is a set of indices of adjacent nodes of the node
v(i) at time t, |G| is the number of components in the set G,
and ∩ and ∪ are the union and the intersection of two sets.
If two nodes are not adjacent, the distance between them
is evaluated by the shortest path length calculated from the
distances between the adjacent nodes. We used the Dijkstra
algorithm to calculate the shortest path length.

Next, the CMDS is applied to the distance matrix D(t).
The procedure of the CMDS is mainly divided into two
parts [12]: (i) centering a matrix D(2)(t) by

A(t) = −
1

2
JD(2)(t)J, (4)

where J is the centering matrix whose diagonal elements
are 1− 1/n and other elements are 1/n, n is the number of
nodes in a network, and D(2)(t) = {d2

ij}. (ii) Applying its
eigenvector decomposition as follows.

A(t) = U(t)Λ(t)Uᵀ(t), (5)

where Λ(t) = diag(λ1(t), . . . , λm(t)), U(t) =
(u1(t) · · · um(t)), ui(t) = (ui1(t) ui2(t) · · · uin(t))ᵀ

and λi(t) and ui(t) are the ith eigenvalue and the ith
eigenvector of the matrix A(t). Here, let the coordinate
value, or the state, of the node v(i) be xi(t) and X(t) =
(x1(t) · · · xn(t))ᵀ. From the relationship between the in-
nerproduct and the distance [12], X(t) is described by

X(t) = U(t)Λ(t)1/2, (6)

where Λ(t)1/2 = diag(
√

λ1(t), . . . ,
√

λm(t)). Then, the
rank of X(t) corresponds to the dimension m of the states
of nodes. Thus, the estimated state of the node v(i) at time
t is written by

x̂i(t) = (
√

λ1(t)u1i(t)
√

λ2(t)u2i(t) · · ·
√

λ3(t)umi(t))
ᵀ.

(7)
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By applying the above mentioned method to the net-
works for all time t, we can reconstruct the time series of
states of nodes x̂i(t).

4. Simulation settings

To evaluate our method, we conducted numerical exper-
iments in the following manner. As evolution rules in
our model, we used three maps: the logistic map [15],
xi(t + 1) = 4xi(t)(1 − xi(t)), the auto regressive (AR)
model [16], xi(t + 1) = 0.9xi(t) + ε(t), and the random
series, xi(t) = ε(t). In the AR model and the random se-
ries, ε(t) is a random number which obeys the Gaussian
distribution whose average µ and variance σ2.

At first, we generated networks from our proposed net-
work model. As initial states of nodes, we assigned a uni-
form random number in [0, 1] to the states of nodes v(i),
xi(0). We then evolved the state xi(t) by F until time T .
As time evolves, the states change and the structures of net-
works also change. After that we obtained T networks. In
our experiment, we determined the threshold θ so that the
number of connections in the initial network becomes p%
of the total links in the complete graph with n nodes. We
set the number of nodes n = 100 and evolved the network
until T = 100.

5. Results

In our method, we first estimated distances among all
the nodes by Eq.(3). Next, we applied the CMDS to the dis-
tance matrix D(t). Then, the nodes are arranged into an m-
dimensional Euclidean space so that the distances among
them are satisfied. The dimension m of the states is deter-
mined by the number of nonzero eigenvalues λs(t), (s =

10-2
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Figure 2: The temporal average of eigenvalues λ̄s for s.
The eigenvalues are calculated from the networks gener-
ated from our model with (a) the logistic map, (b) the AR
model, and (c) the random series. Vertical axes are plotted
in a log-scale.

1, . . . , m and λ1(t) ≥ λ2(t) ≥ · · · ≥ λm(t) > 0).
Figure 2 shows temporal average of the eigenvalues

λ̄s =
1

T

T
∑

t=1

λs(t). In Fig. 2, the parameter p was changed.

From Fig.2, the first eigenvalue λ̄1 is sufficiently larger
than the other eigenvalues for all p. It indicates that it is
enough to describe the states of nodes in a 1-dimensional
Euclidean space. Thus the estimated state time series of the
node v(i) is written by the following equation from Eq.(7):

x̂i(t) =
√

λ1(t)u1i(t) (8)

Next, we investigated how precisely we can reconstruct
the original time series. Figure 3 shows the results for the
logistic map, the AR model, and the random series. In Fig.
3, the correlation coefficient between the original time se-
ries and the reconstructed time series is calculated for sev-
eral values of p (see also Appendix for details of calculation
of the correlation coefficients). The correlation coefficient
is averaged over all nodes for p. From Fig. 3, when the
threshold value p is sufficiently large, we can reconstruct
original time series only from network structures for all
types of networks (20% < p < 90%). The results indicate
that when some dynamical rules exist in real networks, we
can reconstruct them by our strategy and thereby we can
analyze the evolution of networks toward its prediction, its
control, and its modeling.
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Figure 3: Correlation coefficients between the recon-
structed time series and corresponding original time series
are calculated for several values of p. The logistic map
(dark blue), the AR model (red), and the random series
(gray) are used to produce the original network. In the AR
model and the random series, the averages and the vari-
ances of ε(t) is set to zero and unity.

6. Conclusion

In this paper, we proposed a simple evolving network
model based on a threshold graph [8]–[10]. In our model,
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the node has its own state and the states evolve with time.
Because the connections between the nodes are determined
by the Euclidean norm between the states of the nodes, the
network structures also change with time. We also pro-
posed a method for reconstructing the time series of the
nodes only from the networks at each time. In numeri-
cal simulations, we applied our reconstruction method to
some networks in which the states of nodes are evolved
by a dynamical rule. As a result, we could reconstruct the
time series of the nodes using our reconstruction method.
The results indicate that if some dynamical rules exist in
real networks, we can analyze how real complex networks
were in the past and how they will be in the future from the
viewpoint of the dynamical system theory.
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the Japan Society for the Promotion of Science(JSPS) re-
search fellow (No.22·8148) and the research of T.I. was
partially supported by a Grant-in-Aid for Exploratory Re-
search (No.20650032) from JSPS.

Appendix: Calculating the correlation coefficient

In our method, we used CMDS to arrange the nodes in an
m-dimensional space. In the CMDS, nodes are arranged to
satisfy distance relations between them, but the signatures
of coordinate vectors are arbitrary determined. Thus even if
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Figure 4: Example of an original time series and a re-
constructed time series obtained from an evolving network
(the logistic map was used for the dynamics). The origi-
nal time series xi(t) (red line) and the reconstructed time
series x̂i(t) (dark blue line) are shown in (a). The trans-
formed original time series yi(t) (red line) and the squared
reconstructed time series x̂2

i (t) by Eq.(8) (dark blue line)
are shown in (b).

we obtain precise arrangements of the nodes, the signatures
of x̂i(t) might be inversed. Then, when we reconstruct the
time series of the state of a node xi(t), the signature of a
reconstructed state x̂i(t) is often inversed. Figure 4 shows
an example. In Fig.4(a), the original time series xi(t) (red
line) and the reconstructed time series x̂i(t) (dark blue line)
are not similar because the signatures of the values of the
states are partially inversed.

To evaluate the performance of our method without this
effect of the inversion of signatures, we transformed xi(t)
to a squared time series yi(t) = (xi(t) − x̄i)

2, where

x̄i =
1

T

∑n
t=1 xi(t). We then calculated the correlation co-

efficient between the transformed original time series yi(t)
and the squared reconstructed time series x̂2

i (t).
If we compare x̂2

i (t) and yi(t), we can see high cor-
respondences between them from Fig.4(b). In this case,
the correlation coefficient between yi(t) and x̂2

i (t) is about
0.94. This result indicates that the proposed method can
reconstruct the time series of xi(t).

References

[1] Milo, R. et al., Science, vol. 298, 824, 2002.

[2] Barabási, A.-L. and Albert R., Science, vol. 286, 509, 1999.

[3] Watts, D. J. and Strogatz, S. H., Nature, vol. 393, 440, 1998.

[4] Costa, L. Da. F. et al., Advances in Physics, vol. 56, 167,
2007.

[5] Dorogovtsev, S. N. and Goltsev, A. V., Reviews of modern
physics, vol. 80, 1275, 2008.

[6] Braha, D. and Bar-Yam, Y., Complexity, vol. 12, 59–63,
2006.

[7] Hill, S.A. and Braha, D., Physical Review E, vol. 82,
046105, 2010.

[8] Caldarelli, G., Capocci, A., Rios, P. De Los and Muñoz, M.
A., Physical Review Letters, vol. 85, 258702, 2002.

[9] Masuda, N., Miwa, H. and Konno, N., Physical Review E,
vol. 70, 036124, 2004.

[10] Masuda, N., Miwa, H. and Konno, N., Physical Review E,
vol. 71, 036108, 2005.

[11] Hirata, Y., Horai, S. and Aihara, K., European Physical
Journal Special Topics, vol. 164, 2008.

[12] Cox, T. F. and Cox, M. A. A., Multidimensional Scaling,
2nd ed., Chapman and Hall/CRC, 2000.

[13] Eckmann, J.-P. and Oliffson Kamphorst, S. and Ruelle, D.,
Europhysics Letters, vol. 4, pp. 973-977 1987.

[14] Marwan, N., Romano, M.C., Thiel, M. and Kurths, J.,
Physics Reports, vol. 438, pp. 237–329, 2007.

[15] May, R.M., Nature, vol. 261, pp. 459–467, 1976.

[16] Brockwell, P.J. and Davis, R.A., Introduction to Time Series
and Forecasting, 4th ed., Springer, 2000.

- 514 -


	Navigation page
	Session at a Glance
	Technical Program

